Point centromere activity requires an optimal level of centromeric noncoding RNA

被引:51
|
作者
Ling, Yick Hin [1 ]
Yuen, Karen Wing Yee [1 ]
机构
[1] Univ Hong Kong, Sch Biol Sci, Pokfulam, Hong Kong, Peoples R China
关键词
centromeric transcription; long noncoding RNA; centromere-binding factor Cbf1; histone H2A variant Htz1; chromosome instability; HISTONE H2A VARIANT; POLYMERASE-II; CHROMOSOME SEGREGATION; MUTATIONAL ANALYSIS; BINDING-PROTEIN; S-PHASE; TRANSCRIPTION; DNA; CHROMATIN; LOCALIZATION;
D O I
10.1073/pnas.1821384116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In budding yeast, which possesses simple point centromeres, we discovered that all of its centromeres express long noncoding RNAs (cenRNAs), especially in S phase. Induction of cenRNAs coincides with CENP-A(Cse4) loading time and is dependent on DNA replication. Centromeric transcription is repressed by centromere-binding factor Cbf1 and histone H2A variant H2A.Z(Htz1). Deletion of CBF1 and H2A. Z(HTZ1) results in an up-regulation of cenRNAs; an increased loss of a minichromosome; elevated aneuploidy; a down-regulation of the protein levels of centromeric proteins CENP-A(Cse4), CENP-A chaperone HJURP(Scm3), CENP-C-Mif2, Survivin(Bir1), and INCENPSli15; and a reduced chromatin localization of CENP-A(Cse4), CENP-C-Mif2, and Aurora BIpl1. When the RNA interference system was introduced to knock down all cenRNAs from the endogenous chromosomes, but not the cenRNA from the circular minichromosome, an increase in minichromosome loss was still observed, suggesting that cenRNA functions in trans to regulate centromere activity. CenRNA knockdown partially alleviates minichromosome loss in cbf1 Delta, htz1 Delta, and cbf1 Delta htz1 Delta in a dose-dependent manner, demonstrating that cenRNA level is tightly regulated to epigenetically control point centromere function.
引用
收藏
页码:6270 / 6279
页数:10
相关论文
共 50 条
  • [1] Centromeric non-coding RNA as a hidden epigenetic factor of the point centromere
    Ling, Yick Hin
    Yuen, Karen Wing Yee
    CURRENT GENETICS, 2019, 65 (05) : 1165 - 1171
  • [2] Centromeric non-coding RNA as a hidden epigenetic factor of the point centromere
    Yick Hin Ling
    Karen Wing Yee Yuen
    Current Genetics, 2019, 65 : 1165 - 1171
  • [3] A long non-coding RNA is required for targeting centromeric protein A to the human centromere
    Quenet, Delphine
    Dalal, Yamini
    ELIFE, 2014, 3
  • [4] A long non-coding RNA is required for targeting centromeric protein A to the human centromere
    Quenet, Delphine
    Dalal, Yamini
    ELIFE, 2014, 3
  • [5] Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize
    Liu, Yalin
    Su, Handong
    Zhang, Jing
    Liu, Yang
    Feng, Chao
    Han, Fangpu
    PLOS BIOLOGY, 2020, 18 (01)
  • [6] Suppression of progenitor differentiation requires the long noncoding RNA ANCR
    Kretz, Markus
    Webster, Dan E.
    Flockhart, Ross J.
    Lee, Carolyn S.
    Zehnder, Ashley
    Lopez-Pajares, Vanessa
    Qu, Kun
    Zheng, Grace X. Y.
    Chow, Jennifer
    Kim, Grace E.
    Rinn, John L.
    Chang, Howard Y.
    Siprashvili, Zurab
    Khavari, Paul A.
    GENES & DEVELOPMENT, 2012, 26 (04) : 338 - 343
  • [7] Noncoding Centromeric RNA Expression Impairs Chromosome Stability in Human and Murine Stem Cells
    Chan, David Y. L.
    Moralli, Daniela
    Khoja, Suhail
    Monaco, Zoia L.
    DISEASE MARKERS, 2017, 2017
  • [8] Polo kinase recruitment via the constitutive centromere-associated network at the kinetochore elevates centromeric RNA
    Olafsson, Gudjon
    Thorpe, Peter H.
    PLOS GENETICS, 2020, 16 (08):
  • [9] Transcription Regulation by the Noncoding RNA SRG1 Requires Spt2-Dependent Chromatin Deposition in the Wake of RNA Polymerase II
    Thebault, Philippe
    Boutin, Genevieve
    Bhat, Wajid
    Rufiange, Anne
    Martens, Joseph
    Nourani, Amine
    MOLECULAR AND CELLULAR BIOLOGY, 2011, 31 (06) : 1288 - 1300
  • [10] An RNA matchmaker protein regulates the activity of the long noncoding RNA HOTAIR
    Meredith, Emily K.
    Balas, Maggie M.
    Sindy, Karla
    Haislop, Krystal
    Johnson, Aaron M.
    RNA, 2016, 22 (07) : 995 - 1010