SOME PROPERTIES ON THE TENSOR SQUARE OF LIE ALGEBRAS

被引:13
作者
Niroomand, Peyman [1 ]
机构
[1] Damghan Univ, Sch Math & Comp Sci, Damghan, Iran
关键词
Tensor square of Lie algebra; Schur multiplier of Lie algebra; SCHUR MULTIPLIER; PRODUCTS;
D O I
10.1142/S0219498812500855
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we extend the results of [2, 4] for the tensor square of Lie algebras. More precisely, for any Lie algebra L with L/L-2 of finite dimension, we prove L circle times L congruent to L square L circle times L Lambda L and Z(Lambda) (L) boolean AND L-2 = Z(circle times)(L). Moreover, we show that L Lambda L is isomorphic to derived subalgebra of a cover of L, and finally we give a free presentation for it.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Nilpotency and capability in multiplicative Lie algebras
    Kumar, Amit
    Pandey, Mani Shankar
    Upadhyay, Sumit Kumar
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (09) : 3799 - 3811
  • [42] Multiplicative Lie algebras and Schur multiplier
    Lal, Ramji
    Upadhyay, Sumit Kumar
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (09) : 3695 - 3721
  • [43] Polynilpotent capability of a pair of Lie algebras
    Arabyani, Homayoon
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2023, 16 (01): : 95 - 103
  • [44] Translated simple modules for Lie algebras and simple supermodules for Lie superalgebras
    Chen, Chih-Whi
    Coulembier, Kevin
    Mazorchuk, Volodymyr
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) : 255 - 281
  • [45] The hyperrigidity of tensor algebras of C*-correspondences
    Katsoulis, Elias G.
    Ramsey, Christopher
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (01)
  • [46] On the q-tensor square of a group
    Bueno, Ticianne P.
    Rocco, Norai R.
    JOURNAL OF GROUP THEORY, 2011, 14 (05) : 785 - 805
  • [47] On some closure properties of the non-abelian tensor product
    Donadze, G.
    Ladra, M.
    Thomas, V. Z.
    JOURNAL OF ALGEBRA, 2017, 472 : 399 - 413
  • [48] On the structure of groups whose exterior or tensor square is a p-group
    Parvizi, Mohsen
    Niroomand, Peyman
    JOURNAL OF ALGEBRA, 2012, 352 (01) : 347 - 353
  • [49] On the nonabelian tensor square and capability of groups of order 8q
    Rashid, S.
    Sarmin, N. H.
    Erfanian, A.
    Ali, N. M. Mohd
    Zainal, R.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (03): : 581 - 588
  • [50] THE MULTIPLIER AND THE COVER OF DIRECT SUMS OF LIE ALGEBRAS
    Salemkar, Ali Reza
    Edalatzadeh, Behrouz
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2012, 5 (02)