Organic-based magnon spintronics

被引:80
作者
Liu, Haoliang [1 ]
Zhang, Chuang [1 ]
Malissa, Hans [1 ]
Groesbeck, Matthew [1 ]
Kavand, Marzieh [1 ]
McLaughlin, Ryan [1 ]
Jamali, Shirin [1 ]
Hao, Jingjun [2 ]
Sun, Dali [1 ]
Davidson, Royce A. [2 ]
Wojcik, Leonard [1 ]
Miller, Joel S. [2 ]
Boehme, Christoph [1 ]
Vardeny, Z. Valy [1 ]
机构
[1] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
关键词
ROOM-TEMPERATURE; SPIN CURRENT; TRANSPORT;
D O I
10.1038/s41563-018-0035-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnonics concepts utilize spin-wave quanta (magnons) for information transmission, processing and storage. To convert information carried by magnons into an electric signal promises compatibility of magnonic devices with conventional electronic devices, that is, magnon spintronics(1). Magnons in inorganic materials have been studied widely with respect to their generation(2,3), transport(4,5) and detection(6). In contrast, resonant spin waves in the room-temperature organic-based ferrimagnet vanadium tetracyanoethylene (V(TCNE)(x) (x approximate to 2)), were detected only recently(7). Herein we report room-temperature coherent magnon generation, transport and detection in films and devices based on V(TCNE)(x) using three different techniques, which include broadband ferromagnetic resonance (FMR), Brillouin light scattering (BLS) and spin pumping into a Pt adjacent layer. V(TCNE)(x) can be grown as neat films on a large variety of substrates, and it exhibits extremely low Gilbert damping comparable to that in yttrium iron garnet. Our studies establish an alternative use for organic-based magnets, which, because of their synthetic versatility, may substantially enrich the field of magnon spintronics.
引用
收藏
页码:308 / +
页数:6
相关论文
共 35 条
[1]  
An T, 2013, NAT MATER, V12, P549, DOI [10.1038/NMAT3628, 10.1038/nmat3628]
[2]  
Ando K, 2011, NAT MATER, V10, P655, DOI [10.1038/nmat3052, 10.1038/NMAT3052]
[3]  
Ando K, 2013, NAT MATER, V12, P622, DOI [10.1038/NMAT3634, 10.1038/nmat3634]
[4]  
Bauer GEW, 2012, NAT MATER, V11, P391, DOI [10.1038/nmat3301, 10.1038/NMAT3301]
[5]   Coupling of spinwave modes in wire structures [J].
Bauer, H. G. ;
Chauleau, J. -Y. ;
Woltersdorf, G. ;
Back, C. H. .
APPLIED PHYSICS LETTERS, 2014, 104 (10)
[6]  
Chumak AV, 2015, NAT PHYS, V11, P453, DOI [10.1038/nphys3347, 10.1038/NPHYS3347]
[7]   Magnon transistor for all-magnon data processing [J].
Chumak, Andrii V. ;
Serga, Alexander A. ;
Hillebrands, Burkard .
NATURE COMMUNICATIONS, 2014, 5
[8]   Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin-orbit torque [J].
Collet, M. ;
de Milly, X. ;
Kelly, O. d'Allivy ;
Naletov, V. V. ;
Bernard, R. ;
Bortolotti, P. ;
Ben Youssef, J. ;
Demidov, V. E. ;
Demokritov, S. O. ;
Prieto, J. L. ;
Munoz, M. ;
Cros, V. ;
Anane, A. ;
de Loubens, G. ;
Klein, O. .
NATURE COMMUNICATIONS, 2016, 7
[9]  
Cornelissen LJ, 2015, NAT PHYS, V11, P1022, DOI [10.1038/NPHYS3465, 10.1038/nphys3465]
[10]  
Dediu VA, 2009, NAT MATER, V8, P707, DOI [10.1038/nmat2510, 10.1038/NMAT2510]