On regularity and singularity for L∞ (0, T; L3,w(R3)) solutions to the Navier-Stokes equations

被引:0
作者
Choe, Hi Jun [1 ]
Wolf, Jorg [2 ]
Yang, Minsuk [1 ]
机构
[1] Yonsei Univ, Dept Math, Yonseiro 50, Seoul, South Korea
[2] Chung Ang Univ, Dept Math, Heukseokro 84, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
35Q35; 35D30; 35B65; SUITABLE WEAK SOLUTIONS; CRITERIA;
D O I
10.1007/s00208-019-01843-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study local regularity properties of a weak solution u to the Cauchy problem of the incompressible Navier-Stokes equations. We present a new regularity criterion for the weak solution u satisfying the condition L infinity(0,T;L3,w(R3)) without any smallness assumption on that scale, where L3,w(R3) denotes the standard weak Lebesgue space. As an application, we conclude that there are at most a finite number of blowup points at any singular time t.
引用
收藏
页码:617 / 642
页数:26
相关论文
共 24 条
[1]  
[Anonymous], 2015, Ann. Univ. Ferrara Sez. VII Sci. Mat.
[2]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[3]   On the Liouville Type Theorems for Self-Similar Solutions to the Navier-Stokes Equations [J].
Chae, Dongho ;
Wolf, Joerg .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (01) :549-572
[4]   On the singular set in the Navier-Stokes equations [J].
Choe, HJ ;
Lewis, JL .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 175 (02) :348-369
[5]   Backward uniqueness for parabolic equations [J].
Escauriaza, L ;
Seregin, G ;
Sverak, V .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (02) :147-157
[6]   ON THE STOKES PROBLEM IN LIPSCHITZ-DOMAINS [J].
GALDI, GP ;
SIMADER, CG ;
SOHR, H .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1994, 167 :147-163
[7]  
Grafakos L., 2004, CLASSICAL MODERN FOU
[8]   Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations [J].
Gustafson, Stephen ;
Kang, Kyungkeun ;
Tsai, Tai-Peng .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (01) :161-176
[9]  
Hopf E., 1951, Math. Nachr., V4, P213, DOI DOI 10.1002/MANA.3210040121
[10]   Removable singularities of weak solutions to the Navier-Stokes equations [J].
Kozono, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (5-6) :949-966