A q-Analogue of Derivations on the Tensor Algebra and the q-Schur-Weyl Duality

被引:0
作者
Itoh, Minoru [1 ]
机构
[1] Kagoshima Univ, Dept Math & Comp Sci, Fac Sci, Kagoshima 8900065, Japan
关键词
Tensor algebra; Weyl algebra; Clifford algebra; quantum enveloping algebra; Iwahori-Hecke algebra; Schur-Weyl duality;
D O I
10.1007/s11005-015-0793-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents a q-analogue of an extension of the tensor algebra given by the same author. This new algebra naturally contains the ordinary tensor algebra and the Iwahori-Hecke algebra type A of infinite degree. Namely, this algebra can be regarded as a natural mix of these two algebras. Moreover, we can consider natural "derivations" on this algebra. Using these derivations, we can easily prove the q-Schur-Weyl duality (the duality between the quantum enveloping algebra of the general linear Lie algebra and the Iwahori-Hecke algebra of type A).
引用
收藏
页码:1467 / 1477
页数:11
相关论文
共 8 条
[1]  
Goodman R., 2003, REPRESENTATIONS INVA
[2]   ON THE SEMISIMPLICITY OF HECKE ALGEBRAS [J].
GYOJA, A ;
UNO, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1989, 41 (01) :75-79
[3]   QUANTUM DEFORMATION OF CLASSICAL-GROUPS [J].
HAYASHI, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1992, 28 (01) :57-81
[4]   EXTENSIONS OF THE TENSOR ALGEBRA AND THEIR APPLICATIONS [J].
Itoh, Minoru .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (09) :3442-3493
[5]  
JIMBO M, 1986, LETT MATH PHYS, V11, P247, DOI 10.1007/BF00400222
[6]  
Okounkov A., 1996, TRANSFORM GROUPS, V1, P99, DOI DOI 10.1007/BF02587738.MR1390752
[7]  
Okounkov A., 1996, INT MATH RES NOTICES, V1996, P817
[8]   Howe duality and the quantum general linear group [J].
Zhang, RB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (09) :2681-2692