Double copy of electric-magnetic duality

被引:82
|
作者
Huang, Yu-tin [1 ,2 ]
Kol, Uri [3 ]
O'Connell, Donal [4 ]
机构
[1] Natl Taiwan Univ, Dept Phys & Astron, Taipei 10617, Taiwan
[2] Natl Tsing Hua Univ, Natl Ctr Theoret Sci, Phys Div, 101,Sect 2,Kuang Fu Rd, Hsinchu 300, Taiwan
[3] NYU, Dept Phys, Ctr Cosmol & Particle Phys, 726 Broadway, New York, NY 10003 USA
[4] Univ Edinburgh, Sch Phys & Astron, Higgs Ctr Theoret Phys, Edinburgh EH9 3JZ, Midlothian, Scotland
来源
PHYSICAL REVIEW D | 2020年 / 102卷 / 04期
关键词
GRAVITATIONAL WAVES; GENERAL RELATIVITY; MASS;
D O I
10.1103/PhysRevD.102.046005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We argue that the complex transformation relating the Schwarzschild to the Taub-NUT metric, introduced by Talbot, is in fact an electric-magnetic duality transformation. We show that at null infinity, the complex transformation is equivalent to a complexified Bondi-Metzner-Sachs supertranslation, which rotates the supertranslation and the dual (magnetic) supertranslation charges. This can also be seen from the cubic coupling between the classical source and its background, which for Taub-NUT is given by a complex phase rotation acting on gravitational minimal couplings. The same phase rotation generates dyons from electrons at the level of minimally coupled amplitudes, manifesting the double copy relation between the two solutions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] On electric-magnetic duality
    Nahm, W
    NUCLEAR PHYSICS B, 1997, : 91 - 96
  • [2] GLOBAL ASPECTS OF ELECTRIC-MAGNETIC DUALITY
    VERLINDE, E
    NUCLEAR PHYSICS B, 1995, 455 (1-2) : 211 - 225
  • [3] Electric-magnetic duality in noncommutative geometry
    Lizzi, F
    Szabo, RJ
    PHYSICS LETTERS B, 1998, 417 (3-4) : 303 - 311
  • [4] Electric-Magnetic Duality and Topological Insulators
    Karch, A.
    PHYSICAL REVIEW LETTERS, 2009, 103 (17)
  • [5] Soft charges and electric-magnetic duality
    V. Hosseinzadeh
    A. Seraj
    M. M. Sheikh-Jabbari
    Journal of High Energy Physics, 2018
  • [6] Electric-magnetic duality in twisted quantum double model of topological orders
    Yuting Hu
    Yidun Wan
    Journal of High Energy Physics, 2020
  • [7] Electric-magnetic duality in noncommutative geometry
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 417 (03):
  • [8] Can (electric-magnetic) duality be gauged?
    Bunster, Claudio
    Henneaux, Marc
    PHYSICAL REVIEW D, 2011, 83 (04):
  • [9] Electric-magnetic black hole duality
    Deser, S
    Henneaux, M
    Teitelboim, C
    PHYSICAL REVIEW D, 1997, 55 (02): : 826 - 828
  • [10] Soft charges and electric-magnetic duality
    Hosseinzadeh, V.
    Seraj, A.
    Sheikh-Jabbari, M. M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (08):