Approximate symmetry and exact solutions of the perturbed nonlinear Klein-Gordon equation

被引:0
|
作者
Rahimian, Mohammad [1 ]
Nadjafikhah, Mehdi [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Masjed Soleiman Branch, Masjed Soleiman, Iran
[2] Iran Univ Sci & Technol, Sch Math, Dept Pure Math, Tehran 1684613114, Iran
来源
关键词
Perturbed Klein-Gordon equation; Exact solutions; Approximate symmetry; Approximate invariant solutions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Lie approximate symmetry analysis is applied to investigate new exact solutions of the perturbed nonlinear Klein-Gordon equation. The nonlinear Klein-Gordon equation is used to model many nonlinear phenomena. The tanh-coth method, is employed to solve some of the obtained reduced ordinary differential equations. We construct new analytical solutions with small parameter which is effectively obtained by the proposed method.
引用
收藏
页码:266 / 275
页数:10
相关论文
共 50 条
  • [31] A family of the spiral solutions of the nonlinear Klein-Gordon equation
    Gudkov, V.V.
    Mathematical Modelling and Analysis, 1998, 3 (01): : 98 - 103
  • [33] SIMILARITY SOLUTIONS OF THE CUBIC NONLINEAR KLEIN-GORDON EQUATION
    ZHANG, JF
    LIN, J
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1993, 32 (01) : 39 - 42
  • [34] LOCAL SMOOTH SOLUTIONS OF THE NONLINEAR KLEIN-GORDON EQUATION
    Cazenave, Thierry
    Naumkin, Ivan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (05): : 1649 - 1672
  • [35] On the Existence of Global Solutions for a Nonlinear Klein-Gordon Equation
    Polat, Necat
    Taskesen, Hatice
    FILOMAT, 2014, 28 (05) : 1073 - 1079
  • [36] Exact multisoliton solutions of nonlinear Klein-Gordon equation in 1+2 dimensions
    Mirzazadeh, Mohammad
    Eslami, Mostafa
    EUROPEAN PHYSICAL JOURNAL PLUS, 2013, 128 (11):
  • [37] Exact solitary wave solutions of the complex Klein-Gordon equation
    Abazari, Reza
    Jamshidzadeh, Shabnam
    OPTIK, 2015, 126 (19): : 1970 - 1975
  • [38] Shape invariance approach to exact solutions of the Klein-Gordon equation
    Jana, T.
    Roy, P.
    PHYSICS LETTERS A, 2007, 361 (1-2) : 55 - 58
  • [39] New exact solutions of Klein-Gordon
    Lu D.
    Yang L.
    Hong B.
    Jiangsu Daxue Xuebao (Ziran Kexue Ban) / Journal of Jiangsu University (Natural Science Edition), 2010, 31 (01): : 120 - 124
  • [40] Exact, approximate and asymptotic solutions of the Klein–Gordon integral equation
    V. I. Fabrikant
    E. Karapetian
    S. V. Kalinin
    Journal of Engineering Mathematics, 2019, 115 : 141 - 156