Approximate symmetry and exact solutions of the perturbed nonlinear Klein-Gordon equation

被引:0
|
作者
Rahimian, Mohammad [1 ]
Nadjafikhah, Mehdi [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Masjed Soleiman Branch, Masjed Soleiman, Iran
[2] Iran Univ Sci & Technol, Sch Math, Dept Pure Math, Tehran 1684613114, Iran
来源
关键词
Perturbed Klein-Gordon equation; Exact solutions; Approximate symmetry; Approximate invariant solutions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Lie approximate symmetry analysis is applied to investigate new exact solutions of the perturbed nonlinear Klein-Gordon equation. The nonlinear Klein-Gordon equation is used to model many nonlinear phenomena. The tanh-coth method, is employed to solve some of the obtained reduced ordinary differential equations. We construct new analytical solutions with small parameter which is effectively obtained by the proposed method.
引用
收藏
页码:266 / 275
页数:10
相关论文
共 50 条
  • [21] Exact solutions of a (2+1)-dimensional nonlinear Klein-Gordon equation
    Güngör, F
    PHYSICA SCRIPTA, 2000, 61 (04): : 385 - 390
  • [22] New wave solutions, exact and numerical approximations to the nonlinear Klein-Gordon equation
    Partohaghighi, Mohammad
    Sulaiman, Tukur A.
    Yusuf, Abdullahi
    Inc, Mustafa
    Bayram, Mustafa
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (20):
  • [23] Exact multisoliton solutions of nonlinear Klein-Gordon equation in 1 + 2 dimensions
    Mohammad Mirzazadeh
    Mostafa Eslami
    The European Physical Journal Plus, 128
  • [24] Exact solutions of coupled nonlinear Klein-Gordon equations
    Yusufoglu, E.
    Bekir, A.
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (11-12) : 1694 - 1700
  • [25] New exact solutions for nonlinear Klein-Gordon equations
    Han, ZX
    ACTA PHYSICA SINICA, 2005, 54 (04) : 1481 - 1484
  • [26] New exact solutions for nonlinear Klein-Gordon equations
    Han, Zhao-Xiu
    Wuli Xuebao, 4 (1481-1484):
  • [27] Solutions of the perturbed Klein-Gordon equations
    Biswas, A.
    Ebadi, G.
    Fessak, M.
    Johnpillai, A. G.
    Johnson, S.
    Krishnan, E. V.
    Yildirim, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2012, 36 (A4): : 431 - 452
  • [28] A NONLINEAR KLEIN-GORDON EQUATION
    SCOTT, AC
    AMERICAN JOURNAL OF PHYSICS, 1969, 37 (01) : 52 - &
  • [29] Nonlinear Klein-Gordon equation
    Appl Math Lett, 3 (09):
  • [30] Nonlinear Klein-Gordon equation
    Adomian, G
    APPLIED MATHEMATICS LETTERS, 1996, 9 (03) : 9 - 10