共 56 条
High capacity magnetic mesoporous carbon-cobalt composite adsorbents for removal of methylene green from aqueous solutions
被引:25
作者:
Dai, Mingzhi
[2
]
Vogt, Bryan D.
[1
]
机构:
[1] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA
[2] Arizona State Univ, Chem Engn Program, Tempe, AZ 85287 USA
基金:
美国国家科学基金会;
关键词:
Mesoporous carbon;
Magnetic separation;
Water purification;
Cobalt nanoparticle;
MOLECULAR-SIEVES;
NANOPARTICLES;
ADSORPTION;
SILICA;
OXIDE;
DYE;
NI;
ALCOHOL;
D O I:
10.1016/j.jcis.2012.06.062
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Mesoporous carbons containing cobalt nanoparticles are synthesized by tri-or quad-constituent self assembly of Pluronic F127, phenol-formaldehyde oligomer (resol), cobalt acetylacetonate (acac), and optionally tetraethyl orthosilicate (TEOS, optional). Upon pyrolysis in N-2 atmosphere, the resol provides sufficient carbon yield to maintain the ordered structure, while decomposition of the Co(acac) yields cobalt nanoparticles. To provide increased surface area, the dispersed silicate from condensation of TEOS can be etched after carbonization to yield micropores, Without silica templated micropores, the surface area decreases as the cobalt content increases, but there is a concurrent increase in the volume-average pore diameter (BHJ) and a dramatic increase in the adsorption capacity of methylene green with the equilibrium adsorption capacity from 2 to 90 mg/g with increasing Co content. Moreover, the surface area and pore size of mesoporous composites can be dramatically increased by addition of TEOS and subsequent etching. These composites exhibit extremely high adsorption capacity up to 1151 mg/g, which also increases with increases in the Co content. Additionally, the inclusion of cobalt nanoparticles provides magnetic separation from aqueous suspension. The in situ synthesis of the Co nanoparticles yields to a carbon shell that can partially protect the Co from leaching in acidic media: after 96 h in 2 M HCl, the powders remain magnetic. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:127 / 134
页数:8
相关论文