COMPLETELY REGULAR CODES IN THE n-DIMENSIONAL RECTANGULAR GRID

被引:1
作者
Avgustinovich, S., V [1 ]
Vasil'eva, A. Yu [1 ,2 ]
机构
[1] Sobolev Inst Math, Pr Koptyuga 4, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Pirogova Str 1, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2022年 / 19卷 / 02期
关键词
n-dimensional rectangular grid; completely regular code; intersection array; covering radius; perfect coloring;
D O I
10.33048/semi.2022.19.072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that two sequences of the intersection array of an arbitrary completely regular code in the n-dimensional rectangular grid are monotonic. It is shown that the minimal distance of an arbitrary completely regular code is at most 4 and the covering radius of an irreducible completely regular code in the grid is at most 2n.
引用
收藏
页码:861 / 869
页数:9
相关论文
共 12 条
[1]  
Avgustinovich S.V, 2012, J APPL IND MATH, V6, P280
[2]  
Avgustinovich S.V, 2012, P 13 INT WORKSHOP AL, P35
[3]  
Avgustinovich SV, 2016, SIB ELECTRON MATH RE, V13, P987
[4]   On multiple coverings of the infinite rectangular grid with balls of constant radius [J].
Axenovich, MA .
DISCRETE MATHEMATICS, 2003, 268 (1-3) :31-48
[5]  
[Хорошилова Д.Б. Khoroshilova D.B.], 2009, [Дискретный анализ и исследование операций, Diskretnyi analiz i issledovanie operatsii], V16, P80
[6]  
[Хорошилова Дарья Борисовна Khoroshilova Daria Borisovna], 2011, [Дискретный анализ и исследование операций, Diskretnyi analiz i issledovanie operatsii], V18, P82
[7]  
Koolen J. H., 1995, LINEAR MULTILINEAR A, V39, P3
[8]  
Krotov D, 2008, Arxiv, DOI arXiv:0901.0004
[9]  
Martin W.J., 1992, THESIS U WATERLOO
[10]  
[Паршина Ольга Геннадьевна Parshina Olga Gennadevna], 2014, [Дискретный анализ и исследование операций, Diskretnyi analiz i issledovanie operatsii], V21, P76