Translational Homeostasis via the mRNA Cap-Binding Protein, elF4E

被引:131
作者
Yanagiya, Akiko [1 ,2 ]
Suyama, Eigo [3 ]
Adachi, Hironori [1 ,2 ]
Svitkin, Yuri V. [1 ,2 ]
Aza-Blanc, Pedro [3 ]
Imataka, Hiroaki [5 ]
Mikami, Satoshi [6 ]
Martineau, Yvan [1 ,2 ]
Ronai, Ze'ev A. [4 ]
Sonenberg, Nahum [1 ,2 ]
机构
[1] McGill Univ, Dept Biochem, Montreal, PQ H3A 1A3, Canada
[2] McGill Univ, McGill Canc Ctr, Montreal, PQ H3A 1A3, Canada
[3] Sanford Burnham Med Res Inst, Funct Genom Core, La Jolla, CA 92037 USA
[4] Sanford Burnham Med Res Inst, Signal Transduct Program, La Jolla, CA 92037 USA
[5] Univ Hyogo, Grad Sch Engn, Dept Mat Sci & Chem, Himeji, Hyogo 6712280, Japan
[6] RIKEN Syst & Struct Biol Ctr, Yokohama, Kanagawa 2300045, Japan
基金
日本学术振兴会; 加拿大健康研究院;
关键词
INITIATION-FACTOR; 4E; PHOSPHORYLATION; INHIBITOR; UBIQUITINATION; DEGRADATION; EXPRESSION; STABILITY; RIBOSOME; ADAPTERS; INSULIN;
D O I
10.1016/j.molcel.2012.04.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translational control of gene expression plays a key role in many biological processes. Consequently, the activity of the translation apparatus is under tight homeostatic control. elF4E, the mRNA 5' cap-binding protein, facilitates cap-dependent translation and is a major target for translational control. elF4E activity is controlled by a family of repressor proteins, termed 4E-binding proteins (4E-BPs). Here, we describe the surprising finding that despite the importance of elF4E for translation, a drastic knockdown of elF4E caused only minor reduction in translation. This conundrum can be explained by the finding that 4E-BP1 is degraded in elF4E-knock-down cells. Hypophosphorylated 4E-BP1, which binds to elF4E, is degraded, whereas hyperphosphorylated 4E-BP1 is refractory to degradation. We identified the KLHL25-CUL3 complex as the E3 ubiquitin ligase, which targets hypophosphorylated 4E-BP1. Thus, the activity of elF4E is under homeostatic control via the regulation of the levels of its repressor protein 4E-BP1 through ubiquitination.
引用
收藏
页码:847 / 858
页数:12
相关论文
共 50 条
  • [21] Solution-based approach to study binding to the eIF4E cap-binding site using CD spectroscopy
    Garvie, Colin W.
    ANALYTICAL BIOCHEMISTRY, 2013, 434 (01) : 166 - 171
  • [22] N1-Propargylguanosine Modified mRNA Cap Analogs: Synthesis, Reactivity, and Applications to the Study of Cap-Binding Proteins
    Kopcial, Michal
    Wojtczak, Blazej A.
    Kasprzyk, Renata
    Kowalska, Joanna
    Jemielity, Jacek
    MOLECULES, 2019, 24 (10)
  • [23] Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana
    Raczynska, Katarzyna Dorota
    Simpson, Craig G.
    Ciesiolka, Adam
    Szewc, Lukasz
    Lewandowska, Dominika
    McNicol, Jim
    Szweykowska-Kulinska, Zofia
    Brown, John W. S.
    Jarmolowski, Artur
    NUCLEIC ACIDS RESEARCH, 2010, 38 (01) : 265 - 278
  • [24] The cap-binding site of influenza virus protein PB2 as a drug target
    Severin, Chelsea
    de Moura, Tales Rocha
    Liu, Yong
    Li, Keqin
    Zheng, Xiaofeng
    Luo, Ming
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2016, 72 : 245 - 253
  • [25] Thermodynamic Analysis of mRNA Cap Binding by the Human Initiation Factor eIF4E via Free Energy Perturbations
    Guimaraes, Cristiano R. W.
    Kopecky, David J.
    Mihalic, Jeff
    Shen, Shanling
    Jeffries, Shawn
    Thibault, Stephen T.
    Chen, Xiaoqi
    Walker, Nigel
    Cardozo, Mario
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (50) : 18139 - 18146
  • [26] Eukaryotic Initiation Factor 4E phosphorylation acts a switch for its binding to 4E-BP1 and mRNA cap assembly
    Batool, Asiya
    Majeed, Sheikh Tahir
    Aashaq, Sabreena
    Majeed, Rabiya
    Andrabi, Khurshid Iqbal
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 527 (02) : 489 - 495
  • [27] LeishIF3d is a non-canonical cap-binding protein in Leishmania
    Bose, Priyanka
    Baron, Nofar
    Pullaiahgari, Durgeshwar
    Ben-Zvi, Anat
    Shapira, Michal
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2023, 10
  • [28] Structure of a functional cap-binding domain in Rift Valley fever virus L protein
    Gogrefe, Nadja
    Reindl, Sophia
    Guenther, Stephan
    Rosenthal, Maria
    PLOS PATHOGENS, 2019, 15 (05)
  • [29] Spatial patterns of the cap-binding complex eIF4F in human melanoma cells
    Tang, Xinpu
    Pu, Yi
    Peng, Haoning
    Li, Kaixiu
    Faouzi, Sara
    Lu, Tianjian
    Pu, Dan
    Cerezo, Michael
    Xu, Jianguo
    Li, Lu
    Robert, Caroline
    Shen, Shensi
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 1157 - 1168
  • [30] UPF1 Association with the Cap-Binding Protein, CBP80, Promotes Nonsense-Mediated mRNA Decay at Two Distinct Steps
    Hwang, Jungwook
    Sato, Hanae
    Tang, Yalan
    Matsuda, Daiki
    Maquat, Lynne E.
    MOLECULAR CELL, 2010, 39 (03) : 396 - 409