Supervised Classification Methods for Mining Cell Differences as Depicted by Raman Spectroscopy

被引:0
|
作者
Xanthopoulos, Petros [1 ]
De Asmundis, Roberta [2 ]
Guarracino, Mario Rosario [2 ]
Pyrgiotakis, Georgios [3 ]
Pardalos, Panos M. [1 ,4 ]
机构
[1] Univ Florida, Dept Ind & Syst Engn, Ctr Appl Optimizat, Gainesville, FL 32611 USA
[2] Natl Res Council Italy, High Performance Comp & Networking Inst, Naples, Italy
[3] Univ Florida, Particle Eng Res Ctr, Gainesville, FL USA
[4] Univ Florida, McKnight Brain Inst, Gainesville, FL USA
来源
COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS | 2011年 / 6685卷
关键词
Raman spectroscopy; Cell discrimination; Supervised classification; DISCRIMINATION; PARTICLES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Discrimination of different cell types is very important in many medical and biological applications. Existing methodologies are based on cost inefficient technologies or tedious one-by-one empirical examination of the cells. Recently, Raman spectroscopy, a inexpensive and efficient method, has been employed for cell discrimination. Nevertheless, the traditional protocols for analyzing Raman spectra require preprocessing and peak fitting analysis which does not allow simultaneous examination of many spectra. In this paper we examine the applicability of supervised learning algorithms in the cell differentiation problem. Five different methods are presented and tested on two different datasets. Computational results show that machine learning algorithms can be employed in order to automate cell discrimination tasks.abstract
引用
收藏
页码:112 / +
页数:3
相关论文
共 50 条
  • [1] Classification of Frankfurters by FT-Raman Spectroscopy and Chemometric Methods
    Campos, Naira da Silva
    Oliveira, Kamila de Sa
    Almeida, Mariana Ramos
    Stephani, Rodrigo
    Cappa de Oliveira, Luiz Fernando
    MOLECULES, 2014, 19 (11) : 18980 - 18992
  • [2] Evaluation of supervised chemometric methods for sample classification by Laser Induced Breakdown Spectroscopy
    Moncayo, S.
    Manzoor, S.
    Navarro-Villoslada, F.
    Caceres, J. O.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 146 : 354 - 364
  • [3] Cell classification with low-resolution Raman spectroscopy (LRRS)
    Schie, Iwan W.
    Krafft, Christoph
    Popp, Juergen
    JOURNAL OF BIOPHOTONICS, 2016, 9 (10) : 994 - 1000
  • [4] Chemometric methods for classification of clonal varieties of green coffee using Raman spectroscopy and direct sample analysis
    Luna, Aderval S.
    da Silva, Arnaldo P.
    da Silva, Camila S.
    Lima, Igor C. A.
    de Gois, Jefferson S.
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2019, 76 : 44 - 50
  • [5] Supervised learning methods for the recognition of melanoma cell lines through the analysis of their Raman spectra
    Baria, Enrico
    Cicchi, Riccardo
    Malentacchi, Francesca
    Mancini, Irene
    Pinzani, Pamela
    Pazzagli, Marco
    Pavone, Francesco S.
    JOURNAL OF BIOPHOTONICS, 2021, 14 (03)
  • [6] Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria
    Prochazka, D.
    Mazura, M.
    Samek, O.
    Rebrosova, K.
    Porizka, P.
    Klus, J.
    Prochazkova, P.
    Novotny, J.
    Novotny, K.
    Kaiser, J.
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2018, 139 : 6 - 12
  • [7] Model transfer for Raman-spectroscopy-based bacterial classification
    Guo, Shuxia
    Heinke, Ralf
    Stoeckel, Stephan
    Roesch, Petra
    Popp, Juergen
    Bocklitz, Thomas
    JOURNAL OF RAMAN SPECTROSCOPY, 2018, 49 (04) : 627 - 637
  • [8] In vivo subsite classification and diagnosis of oral cancers using Raman spectroscopy
    Sahu, Aditi
    Deshmukh, Atul
    Hole, Arti R.
    Chaturvedi, Pankaj
    Krishna, C. Murali
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2016, 9 (05)
  • [9] The Potential of Raman Spectroscopy for the Classification of Fish Fillets
    Božidar Rašković
    Ralf Heinke
    Petra Rösch
    Jürgen Popp
    Food Analytical Methods, 2016, 9 : 1301 - 1306
  • [10] The Potential of Raman Spectroscopy for the Classification of Fish Fillets
    Raskovic, Bozidar
    Heinke, Ralf
    Roesch, Petra
    Popp, Juergen
    FOOD ANALYTICAL METHODS, 2016, 9 (05) : 1301 - 1306