Necessary and sufficient conditions for existence of blow-up solutions for elliptic problems in Orlicz-Sobolev spaces

被引:9
作者
Santos, Carlos Alberto [1 ]
Zhou, Jiazheng [1 ]
Santos, Jefferson Abrantes [2 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58109970 Campina Grande, PB, Brazil
关键词
Blow up solutions; Orlicz-Sobolev spaces; quasilinear equations; ASYMPTOTIC-BEHAVIOR; EQUATIONS; MODEL;
D O I
10.1002/mana.201600231
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is principally devoted to revisit the remarkable works of Keller and Osserman and generalize some previous results related to the those for the class of quasilinear elliptic problem {div (phi(|del u|)del u) = alpha(x)f(u) in Omega, u >= 0 in Omega, u = infinity on partial derivative Omega, where either Omega subset of R-N with N >= 1 is a smooth bounded domain or Omega = R-N The function phi includes special cases appearing in mathematical models in nonlinear elasticity, plasticity, generalized Newtonian fluids, and in quantum physics. The proofs are based on comparison principle, variational methods and topological arguments on the Orlicz-Sobolev spaces.
引用
收藏
页码:160 / 177
页数:18
相关论文
共 39 条
[1]  
Alsaedi R, 2015, ELECTRON J QUAL THEO, P1
[2]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS AND THEIR DERIVATIVES, FOR SEMILINEAR ELLIPTIC PROBLEMS WITH BLOWUP ON THE BOUNDARY [J].
BANDLE, C ;
MARCUS, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1995, 12 (02) :155-171
[3]   LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR [J].
BANDLE, C ;
MARCUS, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :9-24
[4]  
Bandle C., 2001, APPLICABLE MATH, P68
[5]   Soliton like solutions of a Lorentz invariant equation in dimension 3 [J].
Benci, V ;
Fortunato, D ;
Pisani, L .
REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) :315-344
[6]  
Bieberbach L., 1916, Math. Ann, V77, P173, DOI [10.1007/BF01456901, DOI 10.1007/BF01456901]
[7]  
Dacorogna B., 2004, INTRO CALCULUS VARIA
[8]   EXPLOSIVE SOLUTIONS OF QUASI-LINEAR ELLIPTIC-EQUATIONS - EXISTENCE AND UNIQUENESS [J].
DIAZ, G ;
LETELIER, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (02) :97-125
[9]   LARGE SOLUTIONS FOR YAMABE AND SIMILAR PROBLEMS ON DOMAINS IN RIEMANNIAN MANIFOLDS [J].
Dindos, Martin .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (10) :5131-5178
[10]   A diffusive competition model with a protection zone [J].
Du, Yihong ;
Liang, Xing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (01) :61-86