Bipartite dot product graphs

被引:0
作者
Bailey, Sean [1 ]
Brown, David [2 ]
机构
[1] Texas A& M Univ, Coll Business Engn & Technol, Texarkana, TX USA
[2] Utah State Univ, Dept Math & Stat, Logan, UT USA
关键词
Graph theory; dot product graphs; bipartite graphs; graph representations; subgraph categorization;
D O I
10.1080/23799927.2020.1779820
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a bipartite graph G = (X, Y, E), the bipartite dot product representation of G is a function f : X boolean OR Y -> R-k and a positive threshold t such that for any x is an element of X and y is an element of Y, xy is an element of E if and only if f(x) . f(y) >= t. The minimum k such that a bipartite dot product representation exists for G is the bipartite dot product dimension of G, denoted bdp(G). We will show that such representations exist for all bipartite graphs as well as give an upper bound for the bipartite dot product dimension of any graph. We will also characterize the bipartite graphs of bipartite dot product dimension 1 by their forbidden subgraphs.
引用
收藏
页码:148 / 158
页数:11
相关论文
共 13 条
  • [1] Alon N., 1985, 26th Annual Symposium on Foundations of Computer Science (Cat. No.85CH2224-4), P277, DOI 10.1109/SFCS.1985.30
  • [2] Bailey S., 2016, THESIS
  • [3] Chung F. R. K., 1983, Studies in Pure Mathematics, P95
  • [4] ON THE COVERINGS OF GRAPHS
    CHUNG, FRK
    [J]. DISCRETE MATHEMATICS, 1980, 30 (02) : 89 - 93
  • [5] Covering a graph by complete bipartite graphs
    Erdos, P
    Pyber, L
    [J]. DISCRETE MATHEMATICS, 1997, 170 (1-3) : 249 - 251
  • [6] Dot product representations of graphs
    Fiduccia, CM
    Scheinerman, ER
    Trenk, A
    Zito, JS
    [J]. DISCRETE MATHEMATICS, 1998, 181 (1-3) : 113 - 138
  • [7] DIFFERENCE GRAPHS
    HAMMER, PL
    PELED, UN
    SUN, X
    [J]. DISCRETE APPLIED MATHEMATICS, 1990, 28 (01) : 35 - 44
  • [8] Harary F., 1982, COMMENT MATH U CAROL, V23, P739
  • [9] Horn R.A., 1986, Matrix Analysis
  • [10] Johnson M., 2015, Electon. Notes Discrete Math., V49, P705, DOI DOI 10.1016/J.ENDM.2015.06.095