Long-time behavior of spreading solutions of Schrodinger and diffusion equations

被引:5
作者
Anteneodo, C.
Dias, J. C.
Mendes, R. S.
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22452970 Rio De Janeiro, Brazil
[2] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 05期
关键词
D O I
10.1103/PhysRevE.73.051105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the asymptotic time behavior of the solutions of a large class of linear differential equations that generalize the free-particle Schrodinger and diffusion equations, containing the standard ones as particular cases. We find general scalings that depend only on characteristic features of both the arbitrary initial condition and the Green function associated with the evolution equation. Basically, the amplitude of a long-time solution can be expressed in terms of low order moments of the initial condition (if finite) and low order spatial derivatives of the Green function. These derivatives can also be of the fractional type, which naturally arise when moments are divergent. We apply our results to a large class of differential equations that includes the fractional Schrodinger and Levy diffusion equations. In particular, we show that, except for threshold cases, the amplitude of a packet may follow the asymptotic law t(-alpha), with arbitrary positive alpha.
引用
收藏
页数:7
相关论文
共 31 条
[1]   Entropic uncertainty relation for power-law wave packets [J].
Abe, S ;
Martínez, S ;
Pennini, F ;
Plastino, A .
PHYSICS LETTERS A, 2002, 295 (2-3) :74-77
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]   On shrinking and expansion of radial wave packets [J].
Andreata, MA ;
Dodonov, VV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (25) :7113-7128
[4]   THE SPREADING OF WAVEPACKETS IN QUANTUM-MECHANICS [J].
ANDREWS, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (05) :1123-1129
[5]   Multiplicative noise: A mechanism leading to nonextensive statistical mechanics [J].
Anteneodo, C ;
Tsallis, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (11) :5194-5203
[6]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[7]   Asymptotic behavior of the probability density in one dimension [J].
Damborenea, JA ;
Egusquiza, IL ;
Muga, JG .
AMERICAN JOURNAL OF PHYSICS, 2002, 70 (07) :738-740
[8]   Shrinking quantum packets in one dimension [J].
Dodonov, VV ;
Andreata, MA .
PHYSICS LETTERS A, 2003, 310 (2-3) :101-109
[9]   PACKET SPREADING, STABILIZATION, AND LOCALIZATION IN SUPERSTRONG FIELDS [J].
GROBE, R ;
FEDOROV, MV .
PHYSICAL REVIEW LETTERS, 1992, 68 (17) :2592-2595
[10]   WAVEPACKET SPREADING AND ELECTRON LOCALIZATION IN STRONG-FIELD IONIZATION [J].
GROBE, R ;
FEDOROV, MV .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1993, 26 (06) :1181-1195