A RX-based Hyperspectral Target Detection Method By Fusing Two Kernels

被引:0
作者
Wu, Xiangwei [1 ]
Guo, Baofeng [1 ]
Chen, Chunzhong [1 ]
Shen, Honghai [2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Automat, Inst Informat & Control, Hangzhou 310018, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China
来源
2014 7TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP 2014) | 2014年
关键词
hyperspectral imagery; nonlinear mapping; hybrid kernel; spectral angle kernel; ANOMALY DETECTION; IMAGERY; PATTERN;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper discusses a kernel RX algorithm for hyperspectral target detection. Because it is difficult to estimate the covariance matrix accurately for background areas, directly using the RX Algorithm for hyperspectral target detection is not a good choice in many cases. Therefore, we apply a kernel RX algorithm to our application. The kernel RX algorithm has good nonlinear anomaly detection ability due to its nonlinear mapping from the low dimensional data space to a high dimensional feature space. On the basis of a Gaussian kernel function, we propose a hybrid kernel RX (H-KRX) algorithm by adding a modified spectral angle kernel function to the original Gaussian kernel. Experiments are put into effect based on our tested hyperspectral data and the public AVIRIS 92AV3 data sets. The results indicate that the proposed method can improve the hyperspectral target detection accuracy by 5% with a similar false alarm rate.
引用
收藏
页码:536 / 540
页数:5
相关论文
共 50 条
  • [1] COMPARISON OF RX-BASED ANOMALY DETECTORS ON SYNTHETIC AND REAL HYPERSPECTRAL DATA
    Kucuk, Sefa
    Yuksel, Seniha Esen
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [2] IMPROVED HYPERSPECTRAL ANOMALY TARGET DETECTION METHOD BASED ON MEAN VALUE ADJUSTMENT
    Zhang, Guangyu
    Xu, Mingming
    Zhang, Yan
    Fan, Yanguo
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [3] HYPERSPECTRAL TARGET DETECTION: A NEW METHOD BASED ON LEARNED DICTIONARY
    Niu, Yubin
    Chen, Zhao
    Wang, Bin
    Xia, Wei
    Zhang, Jian Qiu
    Hu, Bo
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4456 - 4459
  • [4] A Density-Based Cluster Kernel RX Algorithm for Hyperspectral Anomaly Detection
    Liu Chun-tong
    Ma Shi-xin
    Wang Hao
    Wang Yang
    Li Hong-cai
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39 (06) : 1878 - 1884
  • [5] Fast anomaly detection in hyperspectral images with RX method on heterogeneous clusters
    J. M. Molero
    A. Paz
    E. M. Garzón
    J. A. Martínez
    A. Plaza
    I. García
    The Journal of Supercomputing, 2011, 58 : 411 - 419
  • [6] Anomaly detection for hyperspectral images based on improved RX algorithm
    Ma, Li
    Tian, Jinwen
    MIPPR 2007: MULTISPECTRAL IMAGE PROCESSING, 2007, 6787
  • [7] Fast anomaly detection in hyperspectral images with RX method on heterogeneous clusters
    Molero, J. M.
    Paz, A.
    Garzon, E. M.
    Martinez, J. A.
    Plaza, A.
    Garcia, I.
    JOURNAL OF SUPERCOMPUTING, 2011, 58 (03) : 411 - 419
  • [8] A target segmentation algorithm based on multivariate statistics and RX anomaly detection
    Guo, Qiandong
    Zhang, Bing
    Gao, Lianru
    Sun, Xu
    Zhang, Wenjuan
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVIII, 2012, 8390
  • [9] A target detection method for hyperspectral image based on mixture noise model
    Zheng, Xiangtao
    Yuan, Yuan
    Lu, Xiaoqiang
    NEUROCOMPUTING, 2016, 216 : 331 - 341
  • [10] Hyperspectral Abnormal Target Detection Based on Extended Multi-attribute Profile and Fast Local RX Algorithm
    A Ruhan
    Yuan Xiaobin
    Mu Xiaodong
    Wang Jingyi
    ACTA PHOTONICA SINICA, 2021, 50 (09) : 289 - 299