Existence of critical invariant tori

被引:18
作者
Koch, Hans [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0143385708000199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider analytic Hamiltonian systems with two degrees of freedom, and prove that every Hamiltonian on the strong local stable manifold of the renormalization group fixed point obtained in Koch [A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete Contin. Dyn. Syst. A 11 (2004), 881-909] has a non-differentiable golden invariant torus (conjugacy to a linear flow).
引用
收藏
页码:1879 / 1894
页数:16
相关论文
共 33 条
[11]   Renormalization of isoenergetically degenerate Hamiltonian flows and associated bifurcations of invariant tori [J].
Gaidashev, DG .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (01) :63-102
[12]   Kolmogorov-Arnold-Moser-renormalization-group analysis of stability in Hamiltonian flows [J].
Govin, M ;
Chandre, C ;
Jauslin, HR .
PHYSICAL REVIEW LETTERS, 1997, 79 (20) :3881-3884
[13]  
Hartman P., 1960, B SOC MAT MEX, V5, P220
[14]  
Hirsch M. W., 1977, LECT NOTES MATH, V583
[15]   SCALING FOR A CRITICAL KOLMOGOROV-ARNOLD-MOSER TRAJECTORY [J].
KADANOFF, LP .
PHYSICAL REVIEW LETTERS, 1981, 47 (23) :1641-1643
[16]  
Khanin K., 1986, NONLINEAR PHENOMENA, P93
[17]   On the renormalization of Halmiltonian flows, and critical invariant tori [J].
Koch, H .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (03) :633-646
[18]   A renormalization group fixed point associated with the breakup of golden invariant tori [J].
Koch, H .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 11 (04) :881-909
[19]   Renormalization of Hamiltonians for Diophantine frequency vectors and KAM tori [J].
Kocic, S .
NONLINEARITY, 2005, 18 (06) :2513-2544
[20]  
KOSYGIN DV, 1991, ADV SOVIET MATH, V3, P99