Existence of critical invariant tori

被引:18
作者
Koch, Hans [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0143385708000199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider analytic Hamiltonian systems with two degrees of freedom, and prove that every Hamiltonian on the strong local stable manifold of the renormalization group fixed point obtained in Koch [A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete Contin. Dyn. Syst. A 11 (2004), 881-909] has a non-differentiable golden invariant torus (conjugacy to a linear flow).
引用
收藏
页码:1879 / 1894
页数:16
相关论文
共 33 条
[1]   Renormalization and periodic orbits for Hamiltonian flows [J].
Abad, JJ ;
Koch, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (02) :371-394
[2]   A renormalization group for Hamiltonians: numerical results [J].
Abad, JJ ;
Koch, H ;
Wittwer, P .
NONLINEARITY, 1998, 11 (05) :1185-1194
[3]   Renormalization and destruction of 1/γ2 tori in the standard nontwist map [J].
Apte, A ;
Wurm, A ;
Morrison, PJ .
CHAOS, 2003, 13 (02) :421-433
[4]   Approximate renormalization-group transformation for Hamiltonian systems with three degrees of freedom [J].
Chandre, C ;
Jauslin, HR ;
Benfatto, G ;
Celletti, A .
PHYSICAL REVIEW E, 1999, 60 (05) :5412-5421
[5]   Approximate renormalization with codimension-one fixed point for the break-up of some three-frequency tori [J].
Chandre, C ;
MacKay, RS .
PHYSICS LETTERS A, 2000, 275 (5-6) :394-400
[6]   Universality for the breakup of invariant tori in Hamiltonian flows [J].
Chandre, C ;
Govin, M ;
Jauslin, HR ;
Koch, H .
PHYSICAL REVIEW E, 1998, 57 (06) :6612-6617
[7]   Renormalization-group analysis for the transition to chaos in Hamiltonian systems [J].
Chandre, C ;
Jauslin, HR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 365 (01) :1-64
[8]   The obstruction criterion for non-existence of invariant circles and renormalization [J].
de la Llave, Rafael ;
Olvera, Arturo .
NONLINEARITY, 2006, 19 (08) :1907-1937
[9]   Renormalization and transition to chaos in area preserving nontwist maps [J].
delCastilloNegrete, D ;
Greene, JM ;
Morrison, PJ .
PHYSICA D, 1997, 100 (3-4) :311-329
[10]   RENORMALIZATION METHOD FOR COMPUTING THE THRESHOLD OF THE LARGE-SCALE STOCHASTIC-INSTABILITY IN 2-DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
DOVEIL, F .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (02) :257-284