De novo transcriptome sequencing and comparative analysis to discover genes related to floral development in Cymbidium faberi Rolfe

被引:17
|
作者
Sun, Yuying [1 ]
Wang, Guangdong [1 ]
Li, Yuxia [1 ]
Jiang, Li [1 ]
Yang, Yuxia [1 ]
Guan, Shuangxue [1 ]
机构
[1] Nanjing Agr Univ, Dept Hort, Nanjing 210095, Jiangsu, Peoples R China
来源
SPRINGERPLUS | 2016年 / 5卷
基金
中国国家自然科学基金;
关键词
Cymbidium faberi Rolfe; RNA-seq; Flower development; Flowering; Genes; MADS-BOX GENES; RNA-SEQ DATA; FLOWER DEVELOPMENT; HOMEOTIC GENES; ORCHID FLOWERS; EVOLUTION; ANTIRRHINUM; ZYGOMORPHY; EXPRESSION; ASYMMETRY;
D O I
10.1186/s40064-016-3089-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cymbidium faberi is a traditional orchid flower in China that is highly appreciated for its fragrant aroma from its zygomorphic flowers. One bottleneck of the commercial production of C. faberi is the long vegetative growth phase of the orchid and the difficulty of the regulation of its flowering time. Moreover, its flower size, shape and color are often targeting traits for orchid breeders. Understanding the molecular mechanisms of floral development in C. faberi will ultimately benefit the genetic improvement of this orchid plant. The goal of this study is to identify potential genes and regulatory networks related to the floral development in C. faberi by using transcriptome sequencing, de novo assembly and computational analyses. The vegetative and flower buds of C. faberi were sampled for such comparisons. The RNA-seq yielded about 189,300 contigs that were assembled into 172,959 unigenes. Furthermore, a total of 13,484 differentially expressed unigenes (DEGs) were identified between the vegetative and flower buds. There were 7683 down-regulated and 5801 up-regulated DEGs in the flower buds compared to those in the vegetative buds, among which 3430 and 6556 DEGs were specifically enriched in the flower or vegetative buds, respectively. A total of 173 DEGs orthologous to known genes associated with the floral organ development, floral symmetry and flowering time were identified, including 12 TCP transcription factors, 34 MADS-box genes and 28 flowering time related genes. Furthermore, expression levels of ten genes potentially involved in floral development and flowering time were verified by quantitative real-time PCR. The identified DEGs will facilitate the functional genetic studies for further understanding the flower development of C. faberi.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Deep Sequencing-Based Analysis of the Cymbidium ensifolium Floral Transcriptome
    Li, Xiaobai
    Luo, Jie
    Yan, Tianlian
    Xiang, Lin
    Jin, Feng
    Qin, Dehui
    Sun, Chongbo
    Xie, Ming
    PLOS ONE, 2013, 8 (12):
  • [12] De novo transcriptome sequencing and analysis of freshwater snail (Radix balthica) to discover genes and pathways affected by exposure to oxazepam
    Jean-Yves Mazzitelli
    Elsa Bonnafe
    Christophe Klopp
    Frédéric Escudier
    Florence Geret
    Ecotoxicology, 2017, 26 : 127 - 140
  • [13] De novo transcriptome sequencing and analysis of freshwater snail (Radix balthica) to discover genes and pathways affected by exposure to oxazepam
    Mazzitelli, Jean-Yves
    Bonnafe, Elsa
    Klopp, Christophe
    Escudier, Frederic
    Geret, Florence
    ECOTOXICOLOGY, 2017, 26 (01) : 127 - 140
  • [14] De novo transcriptome sequencing and analysis of genes related to salt stress response in Glehnia littoralis
    Li, Li
    Li, Mimi
    Qi, Xiwu
    Tang, Xingli
    Zhou, Yifeng
    PEERJ, 2018, 6
  • [15] De Novo Sequencing and Transcriptome Analysis of Wolfiporia cocos to Reveal Genes Related to Biosynthesis of Triterpenoids
    Shu, Shaohua
    Chen, Bei
    Zhou, Mengchun
    Zhao, Xinmei
    Xia, Haiyang
    Wang, Mo
    PLOS ONE, 2013, 8 (08):
  • [16] De novo sequencing and transcriptome analysis of Stichopus horrens to reveal genes related to biosynthesis of triterpenoids
    Liu, Helu
    Kong, Xue
    Chen, Jiawei
    Zhang, Haibin
    AQUACULTURE, 2018, 491 : 358 - 367
  • [17] Sequencing, de novo assembly and comparative analysis of Raphanus sativus transcriptome
    Wu, Gang
    Zhang, Libin
    Yin, Yongtai
    Wu, Jiangsheng
    Yu, Longjiang
    Zhou, Yanhong
    Li, Maoteng
    FRONTIERS IN PLANT SCIENCE, 2015, 6
  • [18] De novo transcriptome sequencing and comparative analysis of differentially expressed genes in kiwifruit under waterlogging stress
    Ji-Yu Zhang
    Sheng-Nan Huang
    Zheng-Hai Mo
    Ji-Ping Xuan
    Xiao-Dong Jia
    Gang Wang
    Zhong-Ren Guo
    Molecular Breeding, 2015, 35
  • [19] De novo transcriptome sequencing and comparative analysis of differentially expressed genes in kiwifruit under waterlogging stress
    Zhang, Ji-Yu
    Huang, Sheng-Nan
    Mo, Zheng-Hai
    Xuan, Ji-Ping
    Jia, Xiao-Dong
    Wang, Gang
    Guo, Zhong-Ren
    MOLECULAR BREEDING, 2015, 35 (11)
  • [20] Comparative transcriptome sequencing and de novo analysis of Vaccinium corymbosum during fruit and color development
    Li, Lingli
    Zhang, Hehua
    Liu, Zhongshuai
    Cui, Xiaoyue
    Zhang, Tong
    Li, Yanfang
    Zhang, Lingyun
    BMC PLANT BIOLOGY, 2016, 16