Blow-up of solutions of a system of equations with double nonlinearities and nonlocal sources

被引:0
作者
Korpusov, M. O. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Parabolic Type; Galerkin Approximation; Degenerate Parabolic Equation; Quasilinear Parabolic Equation; Local Solvability;
D O I
10.1134/S0012266113120057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a nonlocal system of equations of parabolic type with double nonlinearities. A modified Levine method is used to prove the blow-up of solutions.
引用
收藏
页码:1511 / 1517
页数:7
相关论文
共 50 条
[41]   Blow-up and global existence for solutions to the porous medium equation with reaction and fast decaying density [J].
Meglioli, Giulia ;
Punzo, Fabio .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 203 (203)
[42]   Blow-up of Solutions and Local Solvability of an Abstract Cauchy Problem of Second Order with a Noncoercive Source [J].
M. V. Artem’eva ;
M. O. Korpusov .
Computational Mathematics and Mathematical Physics, 2023, 63 :542-552
[43]   Local solvability and solution blow-up of one-dimensional equations of the Yajima–Oikawa–Satsuma type [J].
A. A. Panin ;
G. I. Shlyapugin .
Theoretical and Mathematical Physics, 2017, 193 :1561-1573
[44]   On Nonextendable Solutions and Blow-Ups of Solutions of Pseudoparabolic Equations with Coercive and Constant-Sign Nonlinearities: Analytical and Numerical Study [J].
Kolotov, I. I. ;
Panin, A. A. .
MATHEMATICAL NOTES, 2019, 105 (5-6) :694-706
[45]   On Blow-up and Global Existence of Weak Solutions to Cauchy Problem for Some Nonlinear Equation of the Pseudoparabolic Type [J].
I. K. Katasheva ;
M. O. Korpusov ;
A. A. Panin .
Moscow University Physics Bulletin, 2023, 78 :757-772
[46]   On Blow-up and Global Existence of Weak Solutions to Cauchy Problem for Some Nonlinear Equation of the Pseudoparabolic Type [J].
Katasheva, I. K. ;
Korpusov, M. O. ;
Panin, A. A. .
MOSCOW UNIVERSITY PHYSICS BULLETIN, 2023, 78 (06) :757-772
[47]   Local Solvability, Blow-Up, and Hölder Regularity of Solutions to Some Cauchy Problems for Nonlinear Plasma Wave Equations: III. Cauchy Problems [J].
M. O. Korpusov ;
E. A. Ovsyannikov .
Computational Mathematics and Mathematical Physics, 2023, 63 :1218-1236
[48]   LOCAL SOLVABILITY AND SOLUTION BLOW-UP OF ONE-DIMENSIONAL EQUATIONS OF THE YAJIMA-OIKAWA-SATSUMA TYPE [J].
Panin, A. A. ;
Shlyapugin, G. I. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 193 (02) :1561-1573
[49]   Single-Point Gradient Blow-up on the Boundary for Diffusive Hamilton-Jacobi Equations in Planar Domains [J].
Li Yuxiang ;
Philippe Souplet .
Communications in Mathematical Physics, 2010, 293 :499-517
[50]   Blow-Up Analysis for a Reaction-Diffusion System Coupled via Lα-Norm-Type Sources under Positive Boundary Value Conditions [J].
Zhong, Guangsheng ;
Zhang, Qinghua .
SYMMETRY-BASEL, 2023, 15 (11)