Blow-up of solutions of a system of equations with double nonlinearities and nonlocal sources

被引:0
作者
Korpusov, M. O. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Parabolic Type; Galerkin Approximation; Degenerate Parabolic Equation; Quasilinear Parabolic Equation; Local Solvability;
D O I
10.1134/S0012266113120057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a nonlocal system of equations of parabolic type with double nonlinearities. A modified Levine method is used to prove the blow-up of solutions.
引用
收藏
页码:1511 / 1517
页数:7
相关论文
共 50 条
[21]   Existence and blow-up for a degenerate parabolic equation with nonlocal source [J].
Li, FC ;
Xie, CH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (02) :523-534
[22]   Gradient blow-up in generalized Burgers and Boussinesq equations [J].
Yushkov, Egor V. ;
Korpusov, Maxim O. .
IZVESTIYA MATHEMATICS, 2017, 81 (06) :1286-1296
[23]   Existence and blow-up of solutions for a degenerate semilinear parabolic equation [J].
Ran, Yanping ;
Peng, Congming .
CURRENT TRENDS IN THE DEVELOPMENT OF INDUSTRY, PTS 1 AND 2, 2013, 785-786 :1454-1458
[24]   On Blow-Up of Solutions to Cauchy Problems for Nonlinear Ferrite Equations in (N+1)-Dimensional Case [J].
Korpusov, M. O. ;
Ozornin, V. M. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2025, 65 (04) :765-789
[26]   Blow-up results of the positive solution for a class of degenerate parabolic equations [J].
Dong, Chenyu ;
Ding, Juntang .
OPEN MATHEMATICS, 2021, 19 (01) :773-781
[27]   Blow-up of sign-changing solutions of a quasilinear heat equation [J].
S. I. Pokhozhaev .
Differential Equations, 2011, 47 :373-381
[28]   The blow-up phenomenon for degenerate parabolic equations with variable coefficients and nonlinear source [J].
Cianci, P. ;
Martynenko, A. V. ;
Tedeev, A. F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (07) :2310-2323
[29]   Solvability and Blow-Up of Weak Solutions of Cauchy Problems for (3+1)-Dimensional Equations of Drift Waves in a Plasma [J].
Shafir, R. S. .
MATHEMATICAL NOTES, 2022, 111 (3-4) :484-497
[30]   Finite time blow-up and global existence for the nonlocal complex Ginzburg-Landau equation [J].
Li, Xiaoliang ;
Liu, Baiyu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) :961-985