INCOMPRESSIBLE IMMISCIBLE MULTIPHASE FLOWS IN POROUS MEDIA A VARIATIONAL APPROACH

被引:17
作者
Cances, Clement [1 ]
Gallouet, Thomas O. [2 ]
Monsaingeon, Leonard [3 ]
机构
[1] Inria Lille Nord Europe, Team RAPSODI, Lille, France
[2] Univ Liege, Dept Math, Liege, Belgium
[3] Univ Lorraine, Inst Elie Cartan de Lorraine, Nancy, France
关键词
multiphase porous media flows; Wasserstein gradient flows; constrained parabolic system; minimizing movement scheme; GRADIENT FLOW; DIFFUSION-EQUATIONS; TRANSPORT DISTANCES; GLOBAL PRESSURE; CONVERGENCE; EXISTENCE; MODEL; FORMULATION; SYSTEM;
D O I
10.2140/apde.2017.10.1845
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the competitive motion of N + 1 incompressible immiscible phases within a porous medium as the gradient flow of a singular energy in the space of nonnegative measures with prescribed masses, endowed with some tensorial Wasserstein distance. We show the convergence of the approximation obtained by a minimization scheme a la R. Jordan, D. Kinderlehrer and F. Otto (SIAM J. Math. Anal. 29:1 (1998) 1-17). This allows us to obtain a new existence result for a physically well-established system of PDEs consisting of the Darcy-Muskat law for each phase, N capillary pressure relations, and a constraint on the volume occupied by the fluid. Our study does not require the introduction of any global or complementary pressure.
引用
收藏
页码:1845 / 1876
页数:32
相关论文
共 48 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]   Modeling compositional compressible two-phase flow in porous media by the concept of the global pressure [J].
Amaziane, Brahim ;
Jurak, Mladen ;
Keko, Ana Zgaljic .
COMPUTATIONAL GEOSCIENCES, 2014, 18 (3-4) :297-309
[3]  
Amaziane B, 2012, ELECTRON J DIFFER EQ, P1
[4]   A gradient flow approach to an evolution problem arising in superconductivity [J].
Ambrosio, Luigi ;
Serfaty, Sylvia .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (11) :1495-1539
[5]   A User's Guide to Optimal Transport [J].
Ambrosio, Luigi ;
Gigli, Nicola .
MODELLING AND OPTIMISATION OF FLOWS ON NETWORKS, CETRARO, ITALY 2009, 2013, 2062 :1-155
[6]   Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices [J].
Ambrosio, Luigi ;
Mainini, Edoardo ;
Serfaty, Sylvia .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (02) :217-246
[7]  
Andreianov B., 2015, PREPRINT
[8]  
[Anonymous], 1990, INTRO MODELING TRANS, DOI DOI 10.1007/978-94-009-1926-6_7
[9]  
[Anonymous], 2015, PROGR NONLINEAR DIFF
[10]  
[Anonymous], 1990, OPTIMIZATION NONSMOO