Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: Kinetics and isotherm study

被引:345
作者
Ghaedi, M. [1 ]
Ansari, A. [2 ]
Habibi, M. H. [3 ]
Asghari, A. R. [4 ]
机构
[1] Univ Yasuj, Dept Chem, Yasuj 7591435, Iran
[2] Islamic Azad Univ, Sci & Res Branch, Dept Chem, Fars, Iran
[3] Univ Isfahan, Dept Chem, Esfahan 8174673441, Iran
[4] Semenan Univ, Dept Chem, Semnan, Iran
关键词
Malachite green; Zinc oxide nanoparticle loaded on activated carbon; Kinetics and isotherm study; LOW-COST ADSORBENTS; WASTE-WATER; NONLINEAR METHODS; ADSORPTION-KINETICS; EQUILIBRIUM UPTAKE; SORPTION DYNAMICS; EFFICIENT REMOVAL; SUNSET YELLOW; DYE REMOVAL; BASIC DYE;
D O I
10.1016/j.jiec.2013.04.031
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this research, a novel adsorbent, zinc oxide nanoparticle loaded on activated carbon (ZnO-NP-AC) was synthesized by a simple, low cost and efficient procedure. Subsequently, this novel material was characterizated and identified by different techniques such as Brunauer, Emmett and Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analysis. Unique properties such as high surface area (>603 m(2)/g) and low pore size (<61 angstrom) and average particle size lower than 100 A in addition to high reactive atom and presence of various functional groups make it possible for efficient removal of malachite green (MG). In batch experimental set-up, optimum conditions for quantitative removal of MG by ZnO-NP-AC was attained following searching effect of variables such as adsorbent dosage, initial dye concentration and pH. Optimum values were set as pH of 7.0, 0.015 g of ZnO-NP-AC at removal time of 15 mm. Kinetic studies at various adsorbent dosage and initial MG concentration show that maximum MG removal was achieved within 15 min of the start of every experiment at most conditions. The adsorption of MG follows the pseudo-second-order rate equation in addition to interparticle diffusion model (with removal more than 95%) at all conditions. Equilibrium data fitted well with the Langmuir model at all amount of adsorbent, while maximum adsorption capacity was 322.58 mg g(-1) for 0.005 g of ZnO-NP-AC. (C) 2013 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 28
页数:12
相关论文
共 64 条
[1]   KINETICS OF SOIL CHEMICAL-REACTIONS - RELATIONSHIPS BETWEEN EMPIRICAL EQUATIONS AND DIFFUSION-MODELS [J].
AHARONI, C ;
SPARKS, DL ;
LEVINSON, S ;
RAVINA, I .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1991, 55 (05) :1307-1312
[2]  
AHARONI C, 1991, SSSA SPEC PUBL, V27, P1
[3]  
Ahmad T.W., 1991, PAKISTAN J SCI IND R, V24, P121
[4]   Biosorption of Acid Red 274 (AR 274) on Dicranella varia:: Determination of equilibrium and kinetic model parameters [J].
Akkaya, G ;
Özer, A .
PROCESS BIOCHEMISTRY, 2005, 40 (11) :3559-3568
[5]   Adsorptions of high concentration malachite green by two activated carbons having different porous structures [J].
Akmil-Basar, C ;
Önal, Y ;
Kiliçer, T ;
Eren, D .
JOURNAL OF HAZARDOUS MATERIALS, 2005, 127 (1-3) :73-80
[6]   INTRAPARTICLE DIFFUSION OF A BASIC DYE DURING ADSORPTION ONTO SPHAGNUM PEAT [J].
ALLEN, SJ ;
MCKAY, G ;
KHADER, KYH .
ENVIRONMENTAL POLLUTION, 1989, 56 (01) :39-50
[7]   Sorption of malachite green on chitosan bead [J].
Bekci, Zehra ;
Oezveri, Cosan ;
Seki, Yoldas ;
Yurdakoc, Kadir .
JOURNAL OF HAZARDOUS MATERIALS, 2008, 154 (1-3) :254-261
[8]   Non-conventional low-cost adsorbents for dye removal: A review [J].
Crini, G .
BIORESOURCE TECHNOLOGY, 2006, 97 (09) :1061-1085
[9]   Removal of CI Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies [J].
Crini, Gregorio ;
Peindy, Harmel Ndongo ;
Gimbert, Frederic ;
Robert, Capucine .
SEPARATION AND PURIFICATION TECHNOLOGY, 2007, 53 (01) :97-110
[10]  
Culp SJ, 1996, J AM COLL TOXICOL, V15, P219, DOI 10.3109/10915819609008715