Technologies for trapped-ion quantum information systems

被引:16
|
作者
Eltony, Amira M. [1 ]
Gangloff, Dorian [1 ]
Shi, Molu [1 ]
Bylinskii, Alexei [1 ]
Vuletic, Vladan [1 ]
Chuang, Isaac L. [1 ]
机构
[1] MIT, Dept Phys, Elect Res Lab, Ctr Ultracold Atoms, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Ion traps; Quantum computation; Quantum information; Trapped ions; Ion-photon interface; Graphene; Indium tin oxide; Cavity cooling; Optical trapping; Micromirror; Motional heating; CMOS ion trap; Hybrid trap; Scalable; SINGLE ATOMS; CAVITY; ARRAY; IMPLEMENTATION; ENTANGLEMENT; TELEPORTATION; MANIPULATION; REALIZATION; COLLECTION; SIMULATION;
D O I
10.1007/s11128-016-1298-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Scaling up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit, and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.
引用
收藏
页码:5351 / 5383
页数:33
相关论文
共 50 条
  • [21] High-Fidelity Preservation of Quantum Information During Trapped-Ion Transport
    Kaufmann, Peter
    Gloger, Timm F.
    Kaufmann, Delia
    Johanning, Michael
    Wunderlich, Christof
    PHYSICAL REVIEW LETTERS, 2018, 120 (01)
  • [22] Trapped-ion based nanoscale quantum sensing
    Yoo, Jieun
    Kim, Hyunsoo
    Kim, Hyerin
    Kim, Yeongseo
    Choi, Taeyoung
    NANO CONVERGENCE, 2025, 12 (01):
  • [23] Quantum synchronization of a single trapped-ion qubit
    Zhang, Liyun
    Wang, Zhao
    Wang, Yucheng
    Zhang, Junhua
    Wu, Zhigang
    Jie, Jianwen
    Lu, Yao
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [24] Trapped-ion quantum computing: Progress and challenges
    Bruzewicz, Colin D.
    Chiaverini, John
    McConnell, Robert
    Sage, Jeremy M.
    APPLIED PHYSICS REVIEWS, 2019, 6 (02)
  • [25] Materials challenges for trapped-ion quantum computers
    Brown, Kenneth R.
    Chiaverini, John
    Sage, Jeremy M.
    Haffner, Hartmut
    NATURE REVIEWS MATERIALS, 2021, 6 (10) : 892 - 905
  • [26] Multispecies Trapped-Ion Node for Quantum Networking
    Inlek, I. V.
    Crocker, C.
    Lichtman, M.
    Sosnova, K.
    Monroe, C.
    PHYSICAL REVIEW LETTERS, 2017, 118 (25)
  • [27] Tolerant-gate implementation for the trapped-ion quantum-information processor
    Pahlke, K
    Mathis, W
    PHYSICAL REVIEW A, 2003, 67 (06):
  • [28] Progress of quantum entanglement in a trapped-ion based quantum computer
    Yum, Dahyun
    Choi, Taeyoung
    CURRENT APPLIED PHYSICS, 2022, 41 : 163 - 177
  • [29] Entangling gates for trapped-ion quantum computation and quantum simulation
    Cai, Zhengyang
    Luan, Chun -Yang
    Ou, Lingfeng
    Tu, Hengchao
    Yin, Zihan
    Zhang, Jing -Ning
    Kim, Kihwan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2023, 82 (09) : 882 - 900
  • [30] Multiplexed quantum repeaters based on dual-species trapped-ion systems
    Dhara, Prajit
    Linke, Norbert M.
    Waks, Edo
    Guha, Saikat
    Seshadreesan, Kaushik P.
    PHYSICAL REVIEW A, 2022, 105 (02)