Technologies for trapped-ion quantum information systems

被引:16
作者
Eltony, Amira M. [1 ]
Gangloff, Dorian [1 ]
Shi, Molu [1 ]
Bylinskii, Alexei [1 ]
Vuletic, Vladan [1 ]
Chuang, Isaac L. [1 ]
机构
[1] MIT, Dept Phys, Elect Res Lab, Ctr Ultracold Atoms, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Ion traps; Quantum computation; Quantum information; Trapped ions; Ion-photon interface; Graphene; Indium tin oxide; Cavity cooling; Optical trapping; Micromirror; Motional heating; CMOS ion trap; Hybrid trap; Scalable; SINGLE ATOMS; CAVITY; ARRAY; IMPLEMENTATION; ENTANGLEMENT; TELEPORTATION; MANIPULATION; REALIZATION; COLLECTION; SIMULATION;
D O I
10.1007/s11128-016-1298-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Scaling up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit, and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.
引用
收藏
页码:5351 / 5383
页数:33
相关论文
共 170 条
  • [91] Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate
    Leibfried, D
    DeMarco, B
    Meyer, V
    Lucas, D
    Barrett, M
    Britton, J
    Itano, WM
    Jelenkovic, B
    Langer, C
    Rosenband, T
    Wineland, DJ
    [J]. NATURE, 2003, 422 (6930) : 412 - 415
  • [92] Leibrandt DR, 2009, QUANTUM INF COMPUT, V9, P901
  • [93] Cavity Sideband Cooling of a Single Trapped Ion
    Leibrandt, David R.
    Labaziewicz, Jaroslaw
    Vuletic, Vladan
    Chuang, Isaac L.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (10)
  • [94] Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes
    Li, Xuesong
    Zhu, Yanwu
    Cai, Weiwei
    Borysiak, Mark
    Han, Boyang
    Chen, David
    Piner, Richard D.
    Colombo, Luigi
    Ruoff, Rodney S.
    [J]. NANO LETTERS, 2009, 9 (12) : 4359 - 4363
  • [95] Pinning an Ion with an Intracavity Optical Lattice
    Linnet, Rasmus B.
    Leroux, Ian D.
    Marciante, Mathieu
    Dantan, Aurelien
    Drewsen, Michael
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (23)
  • [96] Finite-geometry models of electric field noise from patch potentials in ion traps
    Low, Guang Hao
    Herskind, Peter F.
    Chuang, Isaac L.
    [J]. PHYSICAL REVIEW A, 2011, 84 (05):
  • [97] Protocols and techniques for a scalable atom-photon quantum network
    Luo, L.
    Hayes, D.
    Manning, T. A.
    Matsukevich, D. N.
    Maunz, P.
    Olmschenk, S.
    Sterk, J. D.
    Monroe, C.
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2009, 57 (11-12): : 1133 - 1152
  • [98] Collecting more than half the fluorescence photons from a single ion
    Maiwald, Robert
    Golla, Andrea
    Fischer, Martin
    Bader, Marianne
    Heugel, Simon
    Chalopin, Benoit
    Sondermann, Markus
    Leuchs, Gerd
    [J]. PHYSICAL REVIEW A, 2012, 86 (04)
  • [99] Cavity cooling of a single atom
    Maunz, P
    Puppe, T
    Schuster, I
    Syassen, N
    Pinkse, PWH
    Rempe, G
    [J]. NATURE, 2004, 428 (6978) : 50 - 52
  • [100] Heralded Quantum Gate between Remote Quantum Memories
    Maunz, P.
    Olmschenk, S.
    Hayes, D.
    Matsukevich, D. N.
    Duan, L. -M.
    Monroe, C.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (25)