Technologies for trapped-ion quantum information systems

被引:16
作者
Eltony, Amira M. [1 ]
Gangloff, Dorian [1 ]
Shi, Molu [1 ]
Bylinskii, Alexei [1 ]
Vuletic, Vladan [1 ]
Chuang, Isaac L. [1 ]
机构
[1] MIT, Dept Phys, Elect Res Lab, Ctr Ultracold Atoms, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Ion traps; Quantum computation; Quantum information; Trapped ions; Ion-photon interface; Graphene; Indium tin oxide; Cavity cooling; Optical trapping; Micromirror; Motional heating; CMOS ion trap; Hybrid trap; Scalable; SINGLE ATOMS; CAVITY; ARRAY; IMPLEMENTATION; ENTANGLEMENT; TELEPORTATION; MANIPULATION; REALIZATION; COLLECTION; SIMULATION;
D O I
10.1007/s11128-016-1298-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Scaling up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit, and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.
引用
收藏
页码:5351 / 5383
页数:33
相关论文
共 170 条
[1]  
Albert M, 2011, NAT PHOTONICS, V5, P633, DOI [10.1038/NPHOTON.2011.214, 10.1038/nphoton.2011.214]
[2]   A microfabricated ion trap with integrated microwave circuitry [J].
Allcock, D. T. C. ;
Harty, T. P. ;
Ballance, C. J. ;
Keitch, B. C. ;
Linke, N. M. ;
Stacey, D. N. ;
Lucas, D. M. .
APPLIED PHYSICS LETTERS, 2013, 102 (04)
[3]   Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap [J].
Allcock, D. T. C. ;
Harty, T. P. ;
Janacek, H. A. ;
Linke, N. M. ;
Ballance, C. J. ;
Steane, A. M. ;
Lucas, D. M. ;
Jarecki, R. L., Jr. ;
Habermehl, S. D. ;
Blain, M. G. ;
Stick, D. ;
Moehring, D. L. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2012, 107 (04) :913-919
[4]   A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators [J].
Andre, A. ;
Demille, D. ;
Doyle, J. M. ;
Lukin, M. D. ;
Maxwell, S. E. ;
Rabl, P. ;
Schoelkopf, R. J. ;
Zoller, P. .
NATURE PHYSICS, 2006, 2 (09) :636-642
[5]   A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J].
Bakr, Waseem S. ;
Gillen, Jonathon I. ;
Peng, Amy ;
Foelling, Simon ;
Greiner, Markus .
NATURE, 2009, 462 (7269) :74-U80
[6]   Nanotopography of graphene [J].
Bangert, U. ;
Gass, M. H. ;
Bleloch, A. L. ;
Nair, R. R. ;
Eccles, J. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (09) :2115-2119
[7]   An open-system quantum simulator with trapped ions [J].
Barreiro, Julio T. ;
Mueller, Markus ;
Schindler, Philipp ;
Nigg, Daniel ;
Monz, Thomas ;
Chwalla, Michael ;
Hennrich, Markus ;
Roos, Christian F. ;
Zoller, Peter ;
Blatt, Rainer .
NATURE, 2011, 470 (7335) :486-491
[8]  
Barrett M., 1982, NATURE, V803, P802
[9]   Deterministic single-photon source from a single ion [J].
Barros, H. G. ;
Stute, A. ;
Northup, T. E. ;
Russo, C. ;
Schmidt, P. O. ;
Blatt, R. .
NEW JOURNAL OF PHYSICS, 2009, 11
[10]   Minimization of ion micromotion in a Paul trap [J].
Berkeland, DJ ;
Miller, JD ;
Bergquist, JC ;
Itano, WM ;
Wineland, DJ .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (10) :5025-5033