On the periodic orbit bifurcating from one single non-hyperbolic equilibrium in a chaotic jerk system

被引:78
作者
Wei, Zhouchao [1 ,2 ,3 ]
Zhang, Wei [3 ]
Yao, Minghui [3 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
[2] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[3] Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
基金
中国博士后科学基金;
关键词
Chaotic attractor; Jerk system; Averaging theory; Non-hyperbolic equilibrium; Zero-Hopf bifurcation; HOPF-BIFURCATION; DIFFERENTIAL-SYSTEMS; DYNAMICAL ANALYSIS; ATTRACTORS;
D O I
10.1007/s11071-015-2230-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper proposes a chaotic jerk system coexisting with only one non-hyperbolic equilibrium with one zero eigenvalue and a pair of complex conjugate eigenvalues. The system has no classical Hopf bifurcations and belongs to a newly category of chaotic systems. Based on the averaging theory, an analytic proof of the existence of zero-Hopf bifurcation is exhibited. Moreover, unstable periodic orbits from the zero-Hopf bifurcation are obtained. This approach may be useful to clarify chaotic attractors with non-hyperbolic equilibrium hidden behind complicated phenomena.
引用
收藏
页码:1251 / 1258
页数:8
相关论文
共 41 条
  • [31] The diffusionless Lorenz equations; Shil'nikov bifurcations and reduction to an explicit map
    van der Schrier, G
    Maas, LRM
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2000, 141 (1-2) : 19 - 36
  • [32] A chaotic system with only one stable equilibrium
    Wang, Xiong
    Chen, Guanrong
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (03) : 1264 - 1272
  • [33] A hyperchaotic system without equilibrium
    Wang, Zenghui
    Cang, Shijian
    Ochola, Elisha Oketch
    Sun, Yanxia
    [J]. NONLINEAR DYNAMICS, 2012, 69 (1-2) : 531 - 537
  • [34] Hidden Hyperchaotic Attractors in a Modified Lorenz-Stenflo System with Only One Stable Equilibrium
    Wei, Zhouchao
    Zhang, Wei
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (10):
  • [35] A new finding of the existence of hidden hyperchaotic attractors with no equilibria
    Wei, Zhouchao
    Wang, Rongrong
    Liu, Anping
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 100 : 13 - 23
  • [36] Dynamical analysis of the generalized Sprott C system with only two stable equilibria
    Wei, Zhouchao
    Yang, Qigui
    [J]. NONLINEAR DYNAMICS, 2012, 68 (04) : 543 - 554
  • [37] Dynamical behaviors of a chaotic system with no equilibria
    Wei, Zhouchao
    [J]. PHYSICS LETTERS A, 2011, 376 (02) : 102 - 108
  • [38] Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria
    Wei, Zhouchao
    Yang, Qigui
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (01) : 106 - 118
  • [39] DETERMINING LYAPUNOV EXPONENTS FROM A TIME-SERIES
    WOLF, A
    SWIFT, JB
    SWINNEY, HL
    VASTANO, JA
    [J]. PHYSICA D, 1985, 16 (03): : 285 - 317
  • [40] AN UNUSUAL 3D AUTONOMOUS QUADRATIC CHAOTIC SYSTEM WITH TWO STABLE NODE-FOCI
    Yang, Qigui
    Wei, Zhouchao
    Chen, Guanrong
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (04): : 1061 - 1083