On the periodic orbit bifurcating from one single non-hyperbolic equilibrium in a chaotic jerk system

被引:78
作者
Wei, Zhouchao [1 ,2 ,3 ]
Zhang, Wei [3 ]
Yao, Minghui [3 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
[2] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[3] Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
基金
中国博士后科学基金;
关键词
Chaotic attractor; Jerk system; Averaging theory; Non-hyperbolic equilibrium; Zero-Hopf bifurcation; HOPF-BIFURCATION; DIFFERENTIAL-SYSTEMS; DYNAMICAL ANALYSIS; ATTRACTORS;
D O I
10.1007/s11071-015-2230-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper proposes a chaotic jerk system coexisting with only one non-hyperbolic equilibrium with one zero eigenvalue and a pair of complex conjugate eigenvalues. The system has no classical Hopf bifurcations and belongs to a newly category of chaotic systems. Based on the averaging theory, an analytic proof of the existence of zero-Hopf bifurcation is exhibited. Moreover, unstable periodic orbits from the zero-Hopf bifurcation are obtained. This approach may be useful to clarify chaotic attractors with non-hyperbolic equilibrium hidden behind complicated phenomena.
引用
收藏
页码:1251 / 1258
页数:8
相关论文
共 41 条
  • [1] Yet another chaotic attractor
    Chen, GR
    Ueta, T
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07): : 1465 - 1466
  • [2] Guckenheimer J., 1980, LECT NOTES MATH, V898, P99, DOI DOI 10.1007/BFB0091910
  • [3] Guckenheimer J., 1990, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, DOI DOI 10.1103/PhysRevE.69.022901
  • [4] Han M., 1998, J SYS SCI MATH SCI, V18, P403
  • [5] Unstable periodic orbits and chaotic economic growth
    Ishiyama, K
    Saiki, Y
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 26 (01) : 33 - 42
  • [6] Unstable periodic solutions embedded in a shell model turbulence
    Kato, S
    Yamada, M
    [J]. PHYSICAL REVIEW E, 2003, 68 (02): : 4
  • [7] Kuznetsov N. V., 2014, INVARIANCE LYAPUNOV
  • [8] Kuznetsov N. V., 2011, ICINCO 2011, P27
  • [9] Kuznetsov N. V., 2011, P 18 IFAC WORLD C, V44, P2506, DOI DOI 10.3182/20110828-6-IT-1002.03316
  • [10] Kuznetsov NV, 2005, 2005 International Conference on Physics and Control (PHYSCON), P596