Overview of metastability and compositional complexity effects for hydrogen-resistant iron alloys: Inverse austenite stability effects

被引:36
作者
Koyama, Motomichi [1 ]
Tasan, Cemal Cem [2 ]
Tsuzaki, Kaneaki [3 ,4 ]
机构
[1] Tohoku Univ, Inst Mat Res, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[2] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Kyushu Univ, Dept Mech Engn, Nishi Ku, Motooka 744, Fukuoka, Fukuoka 8190395, Japan
[4] Kyushu Univ, HYDROGENIOUS, Nishi Ku, Motooka 744, Fukuoka, Fukuoka 8190395, Japan
基金
日本科学技术振兴机构;
关键词
Steels; Hydrogen embrittlement; Fatigue crack growth; Slow strain rate tests; Plasticity; FATIGUE-CRACK GROWTH; HIGH-ENTROPY ALLOYS; MARTENSITIC-TRANSFORMATION; PHASE-TRANSFORMATIONS; STAINLESS-STEELS; EMBRITTLEMENT RESISTANCE; EPSILON-MARTENSITE; NICKEL-EQUIVALENT; TIP DEFORMATION; DESIGN CONCEPT;
D O I
10.1016/j.engfracmech.2019.03.049
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The main factors affecting resistance to hydrogen-assisted cracking are hydrogen diffusivity and local ductility. In this context, we note fcc (gamma) to hcp (epsilon) martensitic transformation, instead of gamma to bcc (alpha) martensitic transformation. The gamma-epsilon martensitic transformation decreases the local hydrogen diffusivity, which thereby can increase strength without critical deterioration of hydrogen embrittlement resistance. Furthermore, epsilon-martensite in a high-entropy alloy is extraordinary ductile. Consequently, the metastable high-entropy alloys showed lower fatigue crack growth rates under a hydrogen effect compared with those of conventional metastable austenitic steels such as type 304.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 58 条
[1]  
Atrens A, 2020, Corrosion Mater. Degradat., V1, P3
[2]   Phase Stability Effects on Hydrogen Embrittlement Resistance in Martensite-Reverted Austenite Steels [J].
Cameron, B. C. ;
Koyama, M. ;
Tasan, C. C. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2019, 50A (01) :29-34
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   Fatigue Crack Growth Behavior and Associated Microstructure in a Metastable High-Entropy Alloy [J].
Eguchi, Takeshi ;
Koyama, Motomichi ;
Fukushima, Yoshihiro ;
Tasan, Cemal Cem ;
Tsuzaki, Kaneaki .
ECF22 - LOADING AND ENVIRONMENTAL EFFECTS ON STRUCTURAL INTEGRITY, 2018, 13 :831-836
[5]  
Elber W., 1970, Engineering Fracture Mechanics, V2, P37, DOI 10.1016/0013-7944(70)90028-7
[6]   PHASE-TRANSFORMATIONS AND RELAXATION PHENOMENA CAUSED BY HYDROGEN IN STABLE AUSTENITIC STAINLESS-STEELS [J].
GAVRILJUK, VG ;
HANNINEN, H ;
TARASENKO, AV ;
TERESHCHENKO, AS ;
ULLAKKO, K .
ACTA METALLURGICA ET MATERIALIA, 1995, 43 (02) :559-568
[7]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[8]   Diffusion coefficient of hydrogen interstitial atom in α-Fe, γ-Fe and ε-Fe crystals by first-principle calculations [J].
He, Yang ;
Li, Yaojun ;
Chen, Changfeng ;
Yu, Haobo .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (44) :27438-27445
[9]   First-Principles Study on Hydrogen Diffusivity in BCC, FCC, and HCP Iron [J].
Hirata, K. ;
Iikubo, S. ;
Koyama, M. ;
Tsuzaki, K. ;
Ohtani, H. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (10) :5015-5022
[10]  
Hirayama T., 1970, J Jpn. Inst Met., V34, P507, DOI [10.2320/jinstmet1952.34.5507, DOI 10.2320/JINSTMET1952.34.5507]