Iterative algorithms for distributed leader-follower model predictive control

被引:0
作者
Ferraz, Henrique [1 ]
Hespanha, Joao P. [1 ]
机构
[1] Univ Calif Santa Barbara, Ctr Control Dynam Syst & Computat CCDC, Santa Barbara, CA 93106 USA
来源
2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC) | 2019年
基金
美国国家科学基金会;
关键词
MULTIAGENT SYSTEMS; CONSENSUS; AGENTS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Two distributed algorithms to estimate the optimal control input sequence that solves a finite horizon quadratic optimization are proposed. The first algorithm utilizes information from 2-hop neighbors, whereas the second only considers 1-hop neighbors. The estimates obtained from both algorithms converge asymptotically, under appropriate assumptions, for any initialization of the algorithm. For the 2-hop algorithm, we show that the converged estimate is the optimal solution to the original optimization problem, while for the 1-hop algorithm the result is generally a suboptimal solution. We evaluate the methods with simulations for a leader-follower model predictive control problem with unstable linear agents dynamics.
引用
收藏
页码:3533 / 3539
页数:7
相关论文
共 25 条
  • [1] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [2] An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination
    Cao, Yongcan
    Yu, Wenwu
    Ren, Wei
    Chen, Guanrong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (01) : 427 - 438
  • [3] Distributed model predictive control: A tutorial review and future research directions
    Christofides, Panagiotis D.
    Scattolini, Riccardo
    Munoz de la Pena, David
    Liu, Jinfeng
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2013, 51 : 21 - 41
  • [4] Algorithms for cooperative multisensor surveillance
    Collins, RT
    Lipton, AJ
    Fujiyoshi, H
    Kanade, T
    [J]. PROCEEDINGS OF THE IEEE, 2001, 89 (10) : 1456 - 1477
  • [5] Distributed output-feedback model predictive control for multi-agent consensus
    Copp, David A.
    Vamvoudakis, Kyriakos G.
    Hespanha, Joao P.
    [J]. SYSTEMS & CONTROL LETTERS, 2019, 127 : 52 - 59
  • [6] Distributed receding horizon control for multi-vehicle formation stabilization
    Dunbar, WB
    Murray, RM
    [J]. AUTOMATICA, 2006, 42 (04) : 549 - 558
  • [7] Ferraz Henrique, 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), P3380, DOI 10.1109/CDC.2017.8264154
  • [8] Cooperative constrained control of distributed agents with nonlinear dynamics and delayed information exchange: A stabilizing receding-horizon approach
    Franco, Elisa
    Magni, Lalo
    Parisini, Thomas
    Polycarpou, Marios M.
    Raimondo, Davide M.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (01) : 324 - 338
  • [9] Model predictive control: For want of a local control Lyapunov function, all is not lost
    Grimm, G
    Messina, MJ
    Tuna, SE
    Teel, AR
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) : 546 - 558
  • [10] Cooperative Optimal Control for Multi-Agent Systems on Directed Graph Topologies
    Hengster-Movric, Kristian
    Lewis, Frank L.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (03) : 769 - 774