Some algebraic invariants of edge ideal of circulant graphs

被引:0
作者
Rinaldo, Giancarlo [1 ]
机构
[1] Univ Trento, Dept Math, Via Sommarive 14, I-38123 Povo, Trento, Italy
来源
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE | 2018年 / 61卷 / 01期
关键词
Circulant graphs; Cohen-Macaulay; Serre's condition;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be the circulant graph C-n(S) with S subset of {1,...,[n/2]} and let I(G) be its edge ideal in the ring K[x(0),...,x(n-1)]. Under the hypothesis that n is prime we : 1) compute the regularity index of R/I(G); 2) compute the Castelnuovo-Mumford regularity when R/I(G) is Cohen-Macaulay; 3) prove that the circulant graphs with S = {1,...,s} are sequentially S-2. We end characterizing the Cohen-Macaulay circulant graphs of Krull dimension 2 and computing their Cohen-Macaulay type and Castelnuovo-Mumford regularity.
引用
收藏
页码:95 / 105
页数:11
相关论文
共 17 条
  • [1] [Anonymous], ARXIV150804065CSLG
  • [2] Well-covered circulant graphs
    Brown, Jason
    Hoshino, Richard
    [J]. DISCRETE MATHEMATICS, 2011, 311 (04) : 244 - 251
  • [3] Independence polynomials of circulants with an application to music
    Brown, Jason
    Hoshino, Richard
    [J]. DISCRETE MATHEMATICS, 2009, 309 (08) : 2292 - 2304
  • [4] Bruns W., 1997, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, VRevised
  • [5] Independence Complexes of Well-Covered Circulant Graphs
    Earl, Jonathan
    Vander Meulen, Kevin N.
    Van Tuyl, Adam
    [J]. EXPERIMENTAL MATHEMATICS, 2016, 25 (04) : 441 - 451
  • [6] Eisenbud D., 2005, Graduate Texts in Mathematics
  • [7] Sequentially Cohen-Macaulay edge ideals
    Francisco, Christopher A.
    Van Tuyl, Adam
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (08) : 2327 - 2337
  • [8] SEQUENTIALLY Sr SIMPLICIAL COMPLEXES AND SEQUENTIALLY S2 GRAPHS
    Haghighi, Hassan
    Terai, Naoki
    Yassemi, Siamak
    Zaare-Nahandi, Rahim
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (06) : 1993 - 2005
  • [9] Distributive lattices, bipartite graphs and Alexander duality
    Herzog, J
    Hibi, T
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2005, 22 (03) : 289 - 302
  • [10] Hoshino R, 2008, THESIS, P1