Deep-learning cardiac motion analysis for human survival prediction

被引:170
作者
Bello, Ghalib A. [1 ]
Dawes, Timothy J. W. [1 ,2 ]
Duan, Jinming [1 ,3 ]
Biffi, Carlo [1 ,3 ]
de Marvao, Antonio [1 ]
Howard, Luke S. G. E. [4 ]
Gibbs, J. Simon R. [2 ,4 ]
Wilkins, Martin R. [5 ]
Cook, Stuart A. [1 ,2 ,6 ,7 ]
Rueckert, Daniel [3 ]
O'Regan, Declan P. [1 ]
机构
[1] Imperial Coll London, MRC London Inst Med Sci, London, England
[2] Imperial Coll London, Natl Heart & Lung Inst, London, England
[3] Imperial Coll London, Dept Comp, London, England
[4] Imperial Coll Healthcare NHS Trust, London, England
[5] Imperial Coll London, Dept Med, Div Expt Med, London, England
[6] Natl Heart Ctr Singapore, Singapore, Singapore
[7] Duke NUS Grad Med Sch, Singapore, Singapore
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
HEART-FAILURE; PULMONARY-HYPERTENSION; MR; CLASSIFICATION; DIAGNOSIS; NETWORK; MODELS; ATLAS;
D O I
10.1038/s42256-019-0019-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimizing the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimized for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients, the predictive accuracy (quantified by Harrell'sC-index) was significantly higher (P = 0.0012) for our modelC = 0.75 (95% CI: 0.70-0.79) than the human benchmark ofC = 0.59 (95% CI: 0.53-0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival. A fully convolutional neural network is used to create time-resolved three-dimensional dense segmentations of heart images. This dense motion model forms the input to a supervised system called 4Dsurvival that can efficiently predict human survival.
引用
收藏
页码:95 / +
页数:14
相关论文
共 78 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Clinical Implications of Chronic Heart Failure Phenotypes Defined by Cluster Analysis [J].
Ahmad, Tariq ;
Pencina, Michael J. ;
Schulte, Phillip J. ;
O'Brien, Emily ;
Whellan, David J. ;
Pina, Ileana L. ;
Kitzman, Dalane W. ;
Lee, Kerry L. ;
O'Connor, Christopher M. ;
Felker, G. Michael .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 64 (17) :1765-1774
[3]   Cardiovascular Event Prediction by Machine Learning The Multi-Ethnic Study of Atherosclerosis [J].
Ambale-Venkatesh, Bharath ;
Yang, Xiaoying ;
Wu, Colin O. ;
Liu, Kiang ;
Hundley, W. Gregory ;
McClelland, Robyn ;
Gomes, Antoinette S. ;
Folsom, Aaron R. ;
Shea, Steven ;
Guallar, Eliseo ;
Bluemke, David A. ;
Lima, Joao A. C. .
CIRCULATION RESEARCH, 2017, 121 (09) :1092-+
[4]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.1451540
[5]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.17605/OSF.IO/BG6T9
[6]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.24433/CO.8519672.V1
[7]   Machine learning in heart failure: ready for prime time [J].
Awan, Saqib Ejaz ;
Sohel, Ferdous ;
Sanfilippo, Frank Mario ;
Bennamoun, Mohammed ;
Dwivedi, Girish .
CURRENT OPINION IN CARDIOLOGY, 2018, 33 (02) :190-195
[8]   Cardiac magnetic resonance findings predicting mortality in patients with pulmonary arterial hypertension: a systematic review and meta-analysis [J].
Baggen, Vivan J. M. ;
Leiner, Tim ;
Post, Marco C. ;
van Dijk, Arie P. ;
Roos-Hesselink, Jolien W. ;
Boersma, Eric ;
Habets, Jesse ;
Sieswerda, Gertjan Tj. .
EUROPEAN RADIOLOGY, 2016, 26 (11) :3771-3780
[9]  
Bai W, 2015, 8 INT C FUNCT IM MOD, V9126
[10]   Automated cardiovascular magnetic resonance image analysis with fully convolutional networks [J].
Bai, Wenjia ;
Sinclair, Matthew ;
Tarroni, Giacomo ;
Oktay, Ozan ;
Rajchl, Martin ;
Vaillant, Ghislain ;
Lee, Aaron M. ;
Aung, Nay ;
Lukaschuk, Elena ;
Sanghvi, Mihir M. ;
Zemrak, Filip ;
Fung, Kenneth ;
Paiva, Jose Miguel ;
Carapella, Valentina ;
Kim, Young Jin ;
Suzuki, Hideaki ;
Kainz, Bernhard ;
Matthews, Paul M. ;
Petersen, Steffen E. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Glocker, Ben ;
Rueckert, Daniel .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20