PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER

被引:828
作者
Howard, Andrew W. [1 ]
Marcy, Geoffrey W. [1 ]
Bryson, Stephen T.
Jenkins, Jon M. [2 ]
Rowe, Jason F.
Batalha, Natalie M. [3 ]
Borucki, William J.
Koch, David G.
Dunham, Edward W. [4 ]
Gautier, Thomas N., III [5 ]
Van Cleve, Jeffrey [2 ]
Cochran, William D. [6 ]
Latham, David W. [7 ]
Lissauer, Jack J.
Torres, Guillermo [7 ]
Brown, Timothy M. [8 ]
Gilliland, Ronald L. [9 ]
Buchhave, Lars A. [10 ]
Caldwell, Douglas A. [2 ]
Christensen-Dalsgaard, Jorgen [11 ,12 ]
Ciardi, David [13 ]
Fressin, Francois [7 ]
Haas, Michael R.
Howell, Steve B. [14 ]
Kjeldsen, Hans [11 ]
Seager, Sara [15 ]
Rogers, Leslie [15 ]
Sasselov, Dimitar D. [7 ]
Steffen, Jason H. [16 ]
Basri, Gibor S. [1 ]
Charbonneau, David [7 ]
Christiansen, Jessie
Clarke, Bruce
Dupree, Andrea [7 ]
Fabrycky, Daniel C. [17 ]
Fischer, Debra A. [18 ]
Ford, Eric B. [19 ]
Fortney, Jonathan J. [17 ]
Tarter, Jill [2 ]
Girouard, Forrest R. [20 ]
Holman, Matthew J. [7 ]
Johnson, John Asher [21 ]
Klaus, Todd C. [20 ]
Machalek, Pavel [2 ]
Moorhead, Althea V. [19 ]
Morehead, Robert C. [19 ]
Ragozzine, Darin [7 ]
Tenenbaum, Peter [2 ]
Twicken, Joseph D. [2 ]
Quinn, Samuel N. [7 ]
机构
[1] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[2] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA
[3] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA
[4] Lowell Observ, Flagstaff, AZ 86001 USA
[5] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[6] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA
[7] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[8] Las Cumbres Observ Global Telescope, Goleta, CA 93117 USA
[9] Space Telescope Sci Inst, Baltimore, MD 21218 USA
[10] Univ Copenhagen, Niels Bohr Inst, DK-1168 Copenhagen, Denmark
[11] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[12] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA
[13] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA
[14] Natl Opt Astron Observ, Tucson, AZ 85719 USA
[15] MIT, Dept Earth Atmospher & Planetary Sci, Dept Phys, Cambridge, MA 02139 USA
[16] Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA
[17] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA
[18] Yale Univ, Dept Astron, New Haven, CT 06510 USA
[19] Univ Florida, Dept Astron, Gainesville, FL 32611 USA
[20] NASA, Orbital Sci Corp, Ames Res Ctr, Moffett Field, CA 94035 USA
[21] CALTECH, Dept Astrophys, Pasadena, CA 91109 USA
[22] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[23] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England
[24] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA
[25] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA
[26] Lawrence Hall Sci, Berkeley, CA 94720 USA
[27] Villanova Univ, Dept Astron & Astrophys, Villanova, PA 19085 USA
[28] Bay Area Environm Res Inst, Sonoma, CA 95476 USA
基金
美国国家科学基金会;
关键词
planetary systems; stars: statistics; techniques: photometric; NEPTUNE-MASS PLANET; SUPER-EARTH; EXTRASOLAR PLANETS; HOT JUPITERS; DETERMINISTIC MODEL; TRANSITING PLANET; LOW-DENSITY; RADIUS RELATIONSHIPS; TERRESTRIAL PLANETS; SOLID EXOPLANETS;
D O I
10.1088/0067-0049/201/2/15
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars. These results are based on the 1235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 R-circle plus. For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R-p, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for the geometric probability of transit, R-star/a. We consider first Kepler target stars within the "solar subset" having T-eff = 4100-6100 K, log g = 4.0-4.9, and Kepler magnitude Kp < 15 mag, i.e., bright, main-sequence GK stars. We include only those stars having photometric noise low enough to permit detection of planets down to 2 R-circle plus. We count planets in small domains of R-p and P and divide by the included target stars to calculate planet occurrence in each domain. The resulting occurrence of planets varies by more than three orders of magnitude in the radius-orbital period plane and increases substantially down to the smallest radius (2 R-circle plus) and out to the longest orbital period (50 days, similar to 0.25 AU) in our study. For P < 50 days, the distribution of planet radii is given by a power law, df/d log R = k(R)R(alpha) with k(R) = 2.9(-0.4)(+0.5), alpha = -1.92 +/- 0.11, and R equivalent to R-p/R-circle plus. This rapid increase in planet occurrence with decreasing planet size agrees with the prediction of core-accretion formation but disagrees with population synthesis models that predict a desert at super-Earth and Neptune sizes for close-in orbits. Planets with orbital periods shorter than 2 days are extremely rare; for R-p > 2 R-circle plus we measure an occurrence of less than 0.001 planets per star. For all planets with orbital periods less than 50 days, we measure occurrence of 0.130 +/- 0.008, 0.023 +/- 0.003, and 0.013 +/- 0.002 planets per star for planets with radii 2-4, 4-8, and 8-32 R-circle plus, in agreement with Doppler surveys. We fit occurrence as a function of P to a power-law model with an exponential cutoff below a critical period P-0. For smaller planets, P-0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over a broader stellar T-eff range of 3600-7100 K, spanning M0 to F2 dwarfs. Over this range, the occurrence of 2-4 R-circle plus planets in the Kepler field increases with decreasing T-eff, with these small planets being seven times more abundant around cool stars (3600-4100 K) than the hottest stars in our sample (6600-7100 K).
引用
收藏
页数:20
相关论文
共 107 条
  • [1] Ocean planet or thick atmosphere: On the mass-radius relationship for solid exoplanets with massive atmospheres
    Adams, E. R.
    Seager, S.
    Elkins-Tanton, L.
    [J]. ASTROPHYSICAL JOURNAL, 2008, 673 (02) : 1160 - 1164
  • [2] Models of giant planet formation with migration and disc evolution
    Alibert, Y
    Mordasini, C
    Benz, W
    Winisdoerffer, C
    [J]. ASTRONOMY & ASTROPHYSICS, 2005, 434 (01) : 343 - 353
  • [3] Extrasolar planet population synthesis III. Formation of planets around stars of different masses
    Alibert, Y.
    Mordasini, C.
    Benz, W.
    [J]. ASTRONOMY & ASTROPHYSICS, 2011, 526
  • [4] [Anonymous], 2000, Allen's astrophysical quantities
  • [5] [Anonymous], APJ UNPUB
  • [6] [Anonymous], VIZIER ONLINE DATA C
  • [7] [Anonymous], IAU S
  • [8] [Anonymous], APJ
  • [9] HAT-P-20b-HAT-P-23b: FOUR MASSIVE TRANSITING EXTRASOLAR PLANETS
    Bakos, G. A.
    Hartman, J.
    Torres, G.
    Latham, D. W.
    Kovacs, Geza
    Noyes, R. W.
    Fischer, D. A.
    Johnson, J. A.
    Marcy, G. W.
    Howard, A. W.
    Kipping, D.
    Esquerdo, G. A.
    Shporer, A.
    Beky, B.
    Buchhave, L. A.
    Perumpilly, G.
    Everett, M.
    Sasselov, D. D.
    Stefanik, R. P.
    Lazar, J.
    Papp, I.
    Sari, P.
    [J]. ASTROPHYSICAL JOURNAL, 2011, 742 (02)
  • [10] HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD
    Bakos, G. A.
    Torres, G.
    Pal, A.
    Hartman, J.
    Kovacs, Geza
    Noyes, R. W.
    Latham, D. W.
    Sasselov, D. D.
    Sipocz, B.
    Esquerdo, G. A.
    Fischer, D. A.
    Johnson, J. A.
    Marcy, G. W.
    Butler, R. P.
    Isaacson, H.
    Howard, A.
    Vogt, S.
    Kovacs, Gabor
    Fernandez, J.
    Moor, A.
    Stefanik, R. P.
    Lazar, J.
    Papp, I.
    Sari, P.
    [J]. ASTROPHYSICAL JOURNAL, 2010, 710 (02) : 1724 - 1745