Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study

被引:23
作者
Fernandes, Sofia R. [1 ,2 ]
Salvador, Ricardo [1 ,3 ]
Wenger, Cornelia [1 ,4 ]
de Carvalho, Mamede [2 ]
Miranda, Pedro C. [1 ]
机构
[1] Univ Lisbon, Fac Ciencias, Inst Biofis & Engn Biomed, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, Fac Med, Inst Med Mol Joao Lobo Antunes, Inst Fisiol, P-1649028 Lisbon, Portugal
[3] Neuroelectrics, Barcelona, Spain
[4] Novocure GmBH, Luzern, Switzerland
关键词
tsDCS; lumbar; sacral; spinal cord; direct current stimulation; volume conductor model; neuromodulation; TRANSCRANIAL CURRENT STIMULATION; FINITE-ELEMENT-ANALYSIS; ELECTRIC-FIELD; DC STIMULATION; DIELECTRIC-PROPERTIES; BRAIN-STIMULATION; CURRENT-DENSITY; MOTOR CORTEX; HUMANS; EXCITABILITY;
D O I
10.1088/1741-2552/aaac38
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Our aim was to perform a computational study of the electric field (E-field) generated by transcutaneous spinal direct current stimulation (tsDCS) applied over the thoracic, lumbar and sacral spinal cord, in order to assess possible neuromodulatory effects on spinal cord circuitry related with lower limb functions. Approach. A realistic volume conductor model of the human body consisting of 14 tissues was obtained from available databases. Rubber pad electrodes with a metallic connector and a conductive gel layer were modelled. The finite element (FE) method was used to calculate the E-field when a current of 2.5 mA was passed between two electrodes. The main characteristics of the E-field distributions in the spinal grey matter (spinal-GM) and spinal white matter (spinal-WM) were compared for seven montages, with the anode placed either over T10, T8 or L2 spinous processes (s.p.), and the cathode placed over right deltoid (rD), umbilicus (U) and right iliac crest (rIC) areas or T8 s.p. Anisotropic conductivity of spinal-WM and of a group of dorsal muscles near the vertebral column was considered. Main results. The average E-field magnitude was predicted to be above 0.15 V m(-1) in spinal cord regions located between the electrodes. L2-T8 and T8-rIC montages resulted in the highest E-field magnitudes in lumbar and sacral spinal segments (>0.30 V m(-1)). E-field longitudinal component is 3 to 6 times higher than the ventral-dorsal and right-left components in both the spinal-GM and WM. Anatomical features such as CSF narrowing due to vertebrae bony edges or disks intrusions in the spinal canal correlate with local maxima positions. Significance. Computational modelling studies can provide detailed information regarding the electric field in the spinal cord during tsDCS. They are important to guide the design of clinical tsDCS protocols that optimize stimulation of application-specific spinal targets.
引用
收藏
页数:16
相关论文
共 53 条
[1]   Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans [J].
Angeli, Claudia A. ;
Edgerton, V. Reggie ;
Gerasimenko, Yury P. ;
Harkema, Susan J. .
BRAIN, 2014, 137 :1394-1409
[2]  
[Anonymous], [No title captured]
[3]  
Bastos R, 2016, IEEE ENG MED BIO, P1754, DOI 10.1109/EMBC.2016.7591056
[4]   The electrical conductivity of human cerebrospinal fluid at body temperature [J].
Baumann, SB ;
Wozny, DR ;
Kelly, SK ;
Meno, FM .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (03) :220-223
[5]   Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro [J].
Bikson, M ;
Inoue, M ;
Akiyama, H ;
Deans, JK ;
Fox, JE ;
Miyakawa, H ;
Jefferys, JGR .
JOURNAL OF PHYSIOLOGY-LONDON, 2004, 557 (01) :175-190
[6]   Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016 [J].
Bikson, Marom ;
Grossman, Pnina ;
Thomas, Chris ;
Zannou, Adantchede Louis ;
Jiang, Jimmy ;
Adnan, Tatheer ;
Mourdoukoutas, Antonios P. ;
Kronberg, Greg ;
Truong, Dennis ;
Boggio, Paulo ;
Brunoni, Andre R. ;
Charvet, Leigh ;
Fregni, Felipe ;
Fritsch, Brita ;
Gillick, Bernadette ;
Hamilton, Roy H. ;
Hampstead, Benjamin M. ;
Jankord, Ryan ;
Kirton, Adam ;
Knotkova, Helena ;
Liebetanz, David ;
Liu, Anli ;
Loo, Colleen ;
Nitsche, Michael A. ;
Reis, Janine ;
Richardson, Jessica D. ;
Rotenberg, Alexander ;
Turkeltaub, Peter E. ;
Woods, Adam J. .
BRAIN STIMULATION, 2016, 9 (05) :641-661
[7]   Guidelines for precise and accurate computational models of tDCS [J].
Bikson, Marom ;
Datta, Abhishek .
BRAIN STIMULATION, 2012, 5 (03) :430-431
[8]   Cathodal transcutaneous spinal direct current stimulation (tsDCS) improves motor unit recruitment in healthy subjects [J].
Bocci, Tommaso ;
Vannini, Beatrice ;
Torzini, Antonio ;
Mazzatenta, Andrea ;
Vergari, Maurizio ;
Cogiamanian, Filippo ;
Priori, Alberto ;
Sartucci, Ferdinando .
NEUROSCIENCE LETTERS, 2014, 578 :75-79
[9]   The electric field in the cortex during transcranial current stimulation [J].
Cavaleiro Miranda, Pedro ;
Mekonnen, Abeye ;
Salvador, Ricardo ;
Ruffmi, Giulio .
NEUROIMAGE, 2013, 70 :48-58
[10]   The Virtual Family-development of surface-based anatomical models of two adults and two children for dosimetric simulations [J].
Christ, Andreas ;
Kainz, Wolfgang ;
Hahn, Eckhart G. ;
Honegger, Katharina ;
Zefferer, Marcel ;
Neufeld, Esra ;
Rascher, Wolfgang ;
Janka, Rolf ;
Bautz, Werner ;
Chen, Ji ;
Kiefer, Berthold ;
Schmitt, Peter ;
Hollenbach, Hans-Peter ;
Shen, Jianxiang ;
Oberle, Michael ;
Szczerba, Dominik ;
Kam, Anthony ;
Guag, Joshua W. ;
Kuster, Niels .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (02) :N23-N38