Synthesis and reversible lithium storage of Cr2O5 as a new high energy density cathode material for rechargeable lithium batteries

被引:21
作者
Feng, Xu-Yong [1 ]
Ding, Ning [1 ]
Wang, Li [1 ]
Ma, Xiao-Hang [1 ]
Li, Yong-Ming [1 ]
Chen, Chun-Hua [1 ]
机构
[1] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
基金
美国国家科学基金会;
关键词
Chromium oxide; Ex-situ X-ray diffraction; Energy density; Cyclic voltammogram; Lithium batteries; CHROMIUM OXIDES; ANODE MATERIALS; PERFORMANCE; COMPOSITE; ARRAYS; CR8O21;
D O I
10.1016/j.jpowsour.2012.08.061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chromium trioxide is calcined from 350 to 400 degrees C yielding pure Cr2O5. The electrochemical properties of the resulting chromium oxides have been measured in the potential range 2.0-4.5 V (vs. Li+/Li) when used in lithium batteries. The first discharge process, the intercalation of lithium into Cr2O5, proceeds via two steps. In the following cycles, lithium is found to be reversibly de-lithiated/lithiated via a solid solution process with an un-known single phase LixCr2O5 (u-phase) characterized by an X-ray diffractive lattice spacing of about 0.20 nm. The sample that results from chromium trioxide being calcined at 350 degrees C shows the highest capacity of 273 mAh g(-1) (the first discharge at 0.5 C rate) and the sample calcined at 400 degrees C shows the best cyclability with the capacity retention of 96% after 100 cycles. The energy density of Cr2O5 can reach 819 Wh kg(-1) with the energy conversion efficiency of 83%. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:184 / 187
页数:4
相关论文
共 25 条
[1]  
Armand M.B., 1973, FAST ION TRANS SOLID, P665
[2]  
Arora P, 1998, ELECTROCHEM SOLID ST, V1, P249, DOI 10.1149/1.1390702
[3]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[4]   CHROMIUM OXIDES AS CATHODES FOR SECONDARY HIGH-ENERGY DENSITY LITHIUM BATTERIES [J].
BESENHARD, JO ;
SCHOLLHORN, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (07) :968-971
[5]   Synthesis and characterization of single-crystalline α-MoO3 nanofibers for enhanced Li-ion intercalation applications [J].
Dewangan, Khemchand ;
Sinha, Nupur Nikkan ;
Sharma, Prashant K. ;
Pandey, Avinash C. ;
Munichandraiah, N. ;
Gajbhiye, N. S. .
CRYSTENGCOMM, 2011, 13 (03) :927-933
[6]   High capacity and excellent cyclability of vanadium (IV) oxide in lithium battery applications [J].
Ding, Ning ;
Feng, Xuyong ;
Liu, Shuhua ;
Xu, Jing ;
Fang, Xin ;
Lieberwirth, Ingo ;
Chen, Chunhua .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (03) :538-541
[7]   Effects of Self-Assembled Materials Prepared from V2O5 for Lithium Ion Electroinsertion [J].
Galiote, Nelson A. ;
Camargo, Maiui N. L. ;
Iost, Rodrigo M. ;
Crespilho, Frank ;
Huguenin, Fritz .
LANGMUIR, 2011, 27 (19) :12209-12217
[8]   CuO/C microspheres as anode materials for lithium ion batteries [J].
Huang, X. H. ;
Wang, C. B. ;
Zhang, S. Y. ;
Zhou, F. .
ELECTROCHIMICA ACTA, 2011, 56 (19) :6752-6756
[9]   Enhanced electrochemical performance of porous NiO-Ni nanocomposite anode for lithium ion batteries [J].
Li, Xifei ;
Dhanabalan, Abirami ;
Wang, Chunlei .
JOURNAL OF POWER SOURCES, 2011, 196 (22) :9625-9630
[10]   Synthesis and characterization of Cr8O21 as cathode material for rechargeable lithium batteries [J].
Liu, Jianyong ;
Wang, Zhaoxiang ;
Li, Hong ;
Huang, Xuejie .
SOLID STATE IONICS, 2006, 177 (26-32) :2675-2678