Scaling limits of a tagged particle in the exclusion process with variable diffusion coefficient

被引:12
作者
Goncalves, Patricia [2 ]
Jara, Milton [1 ]
机构
[1] Univ Catholique Louvain, FYMA, B-1348 Louvain, Belgium
[2] Ctr Matemat, P-4710057 Braga, Portugal
关键词
tagged particle; random environment; zero-range process; hydrodynamic limit; fractional Brownian motion;
D O I
10.1007/s10955-008-9595-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove a law of large numbers and a central limit theorem for a tagged particle in a symmetric simple exclusion process in Z with variable diffusion coefficient. The scaling limits are obtained from a similar result for the current through -1/2 for a zero-range process with bond disorder. For the CLT, we prove convergence to a fractional Brownian motion of Hurst exponent 1/4.
引用
收藏
页码:1135 / 1143
页数:9
相关论文
共 21 条
[1]  
AMBJORSSON T, 2008, DYNAMICS 2 HARDCORE
[2]  
[Anonymous], 1985, Contemp. Math
[3]   THE MOTION OF A TAGGED PARTICLE IN THE SIMPLE SYMMETRIC EXCLUSION SYSTEM ON Z [J].
ARRATIA, R .
ANNALS OF PROBABILITY, 1983, 11 (02) :362-373
[4]   Single-file diffusion with random diffusion constants [J].
Aslangul, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (05) :851-862
[5]   LARGE DEVIATIONS FROM THE HYDRODYNAMICAL LIMIT OF MEAN ZERO ASYMMETRIC ZERO-RANGE PROCESSES [J].
BENOIS, O ;
KIPNIS, C ;
LANDIM, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1995, 55 (01) :65-89
[6]   Phase transition in the two-component symmetric exclusion process with open boundaries [J].
Brzank, A. ;
Schuetz, G. M. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[7]   Flux fluctuations in the one dimensional nearest neighbors symmetric simple exclusion process [J].
De Masi, A ;
Ferrari, PA .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (3-4) :677-683
[8]   Hydrodynamic limit of a disordered lattice gas [J].
Faggionato, A ;
Martinelli, F .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 127 (04) :535-608
[9]   HYDRODYNAMICS IN A SYMMETRIC RANDOM MEDIUM [J].
FRITZ, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (01) :13-25
[10]   Scaling limits for gradient systems in random environment [J].
Goncalves, Patricia ;
Jara, Milton .
JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) :691-716