Positive topological entropy for monotone recurrence relations

被引:5
作者
Guo, Li [1 ]
Miao, Xue-Qing [1 ]
Wang, Ya-Nan [1 ]
Qin, Wen-Xin [1 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
AUBRY-MATHER THEORY; VARIATIONAL-PROBLEMS; GROUND-STATES; MINIMAL SOLUTIONS; CRITICAL-POINTS; CIRCLES; ORBITS; TORUS;
D O I
10.1017/etds.2014.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We associate the topological entropy of monotone recurrence relations with the Aubry-Mather theory. If there exists an interval [rho(0), rho(1)] such that, for each omega is an element of (rho(0), rho(1)) , all Birkhoff minimizers with rotation number omega do not form a foliation, then the diffeomorphism on the high-dimensional cylinder defined via the monotone recurrence relation has positive topological entropy.
引用
收藏
页码:1880 / 1901
页数:22
相关论文
共 24 条
[1]  
Angenent S.B., 1992, IMA Vol. Math. Appl., V44, P1
[2]   MONOTONE RECURRENCE RELATIONS, THEIR BIRKHOFF ORBITS AND TOPOLOGICAL-ENTROPY [J].
ANGENENT, SB .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 :15-41
[3]   CHAOTIC TRAJECTORIES IN THE STANDARD MAP - THE CONCEPT OF ANTIINTEGRABILITY [J].
AUBRY, S ;
ABRAMOVICI, G .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :199-219
[4]   THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES [J].
AUBRY, S ;
LEDAERON, PY .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) :381-422
[5]  
BANGERT V, 1989, ANN I H POINCARE-AN, V6, P95
[6]   A UNIQUENESS THEOREM FOR ZN-PERIODIC VARIATIONAL-PROBLEMS [J].
BANGERT, V .
COMMENTARII MATHEMATICI HELVETICI, 1987, 62 (04) :511-531
[7]  
Bangert V., 1988, Dynamics Reported, V1, P1
[8]   Metric properties of minimal solutions of discrete periodical variational problems [J].
Blank, M. L. .
NONLINEARITY, 1989, 2 (01) :1-22
[9]   INVARIANT CIRCLES AND THE ORDER STRUCTURE OF PERIODIC-ORBITS IN MONOTONE TWIST MAPS [J].
BOYLAND, PL ;
HALL, GR .
TOPOLOGY, 1987, 26 (01) :21-35
[10]   A GEOMETRIC CRITERION FOR POSITIVE TOPOLOGICAL-ENTROPY [J].
BURNS, K ;
WEISS, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :95-118