Revealing the nature of magnetic shadows with numerical 3D-MHD simulations

被引:16
|
作者
Nutto, C. [1 ]
Steiner, O. [1 ]
Roth, M. [1 ]
机构
[1] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany
来源
ASTRONOMY & ASTROPHYSICS | 2012年 / 542卷
关键词
Sun: chromosphere; Sun: magnetic topology; Sun: oscillations; magnetic fields; magnetohydrodynamics (MHD); WAVE-PROPAGATION; SOLAR CHROMOSPHERE; OSCILLATIONS; ATMOSPHERE; TRACE;
D O I
10.1051/0004-6361/201218856
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We investigate the interaction of magneto-acoustic waves with magnetic network elements with the aim of finding possible signatures of the magnetic shadow phenomenon in the vicinity of network elements. Methods. We carried out three-dimensional numerical simulations of magneto-acoustic wave propagation in a model solar atmosphere that is threaded by a complexly structured magnetic field, resembling that of a typical magnetic network element and of internetwork regions. High-frequency waves of 10 mHz are excited at the bottom of the simulation domain. On their way through the upper convection zone and through the photosphere and the chromosphere they become perturbed, refracted, and converted into different mode types. We applied a standard Fourier analysis to produce oscillatory power-maps of the line-of-sight velocity. Results. In the power maps of the upper photosphere and the lower chromosphere, we clearly see the magnetic shadow: a seam of suppressed power surrounding the magnetic network elements. We demonstrate that this shadow is linked to the mode conversion process and that power maps at these height levels show the signature of three different magneto-acoustic wave modes.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] 3D numerical simulations of oscillations in solar prominences
    Adrover-Gonzalez, A.
    Terradas, J.
    ASTRONOMY & ASTROPHYSICS, 2020, 633
  • [32] 3-D numerical simulations of coronal loops oscillations
    Selwa, M.
    Ofman, L.
    ANNALES GEOPHYSICAE, 2009, 27 (10) : 3899 - 3908
  • [33] Excitation and evolution of coronal oscillations in self-consistent 3D radiative MHD simulations of the solar atmosphere
    Kohutova, P.
    Popovas, A.
    ASTRONOMY & ASTROPHYSICS, 2021, 647
  • [34] Casting the Coronal Magnetic Field Reconstruction Tools in 3D Using the MHD Bifrost Model
    Fleishman, Gregory D.
    Anfinogentov, Sergey
    Loukitcheva, Maria
    Mysh'yakov, Ivan
    Stupishin, Alexey
    ASTROPHYSICAL JOURNAL, 2017, 839 (01)
  • [35] MANCHA3D Code: Multipurpose Advanced Nonideal MHD Code for High-Resolution Simulations in Astrophysics
    Modestov, M.
    Khomenko, E.
    Vitas, N.
    de Vicente, A.
    Navarro, A.
    Gonzalez-Morales, P. A.
    Collados, M.
    Felipe, T.
    Martinez-Gomez, D.
    Hunana, P.
    Luna, M.
    Pistarini, M. Koll
    Braileanu, B. Popescu
    Perdomo Garcia, A.
    Liakh, V.
    Santamaria, I.
    Miguez, M. M. Gomez
    SOLAR PHYSICS, 2024, 299 (02)
  • [36] 3D simulations of rising magnetic flux tubes in a compressible rotating interior: The effect of magnetic tension
    Fournier, Y.
    Arlt, R.
    Ziegler, U.
    Strassmeier, K. G.
    ASTRONOMY & ASTROPHYSICS, 2017, 607
  • [37] 3D MHD Jet in a Non-Uniform Magnetic Field
    黄护林
    韩东
    Plasma Science & Technology, 2005, (06) : 3092 - 3096
  • [38] 3D MHD jet in a non-uniform magnetic field
    Huang, HL
    Han, D
    PLASMA SCIENCE & TECHNOLOGY, 2005, 7 (06) : 3092 - 3096
  • [39] Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications
    Khodak, Andrei
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2017, 45 (09) : 2561 - 2565
  • [40] INTERPRETATION OF SOLAR IRRADIANCE MONITOR MEASUREMENTS THROUGH ANALYSIS OF 3D MHD SIMULATIONS
    Criscuoli, S.
    Uitenbroek, H.
    ASTROPHYSICAL JOURNAL, 2014, 788 (02)