Spin-orbit induced electronic spin separation in semiconductor nanostructures

被引:66
|
作者
Kohda, Makoto [1 ,2 ]
Nakamura, Shuji [3 ]
Nishihara, Yoshitaka [3 ]
Kobayashi, Kensuke [3 ,4 ]
Ono, Teruo [3 ]
Ohe, Jun-ichiro [5 ]
Tokura, Yasuhiro [6 ,7 ]
Mineno, Taiki [1 ]
Nitta, Junsaku [1 ]
机构
[1] Tohoku Univ, Dept Mat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
[2] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
[3] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6610011, Japan
[4] Osaka Univ, Dept Phys, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
[5] Toho Univ, Dept Phys, Funabashi, Chiba 2748510, Japan
[6] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
[7] Univ Tsukuba, Grad Sch Pure Appl Sci, Tsukuba, Ibaraki 3058571, Japan
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
QUANTIZATION; CONDUCTANCE;
D O I
10.1038/ncomms2080
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Spin-orbit induced equilibrium spin currents in materials
    Droghetti, Andrea
    Rungger, Ivan
    Rubio, Angel
    Tokatly, Ilya, V
    PHYSICAL REVIEW B, 2022, 105 (02)
  • [22] Spin-Selective Resonant Tunneling Induced by Rashba Spin-Orbit Interaction in Semiconductor Nanowire
    Pawlowski, J.
    Skowron, G.
    Szumniak, P.
    Bednarek, S.
    PHYSICAL REVIEW APPLIED, 2021, 15 (05)
  • [23] Spin filter using semiconductor point contacts with spin-orbit interaction
    Eto, M.
    Hayashi, T.
    Kurotani, Y.
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 1516 - +
  • [24] Imaging mesoscopic spin Hall flow:: Spatial distribution of local spin currents and spin densities in and out of multiterminal spin-orbit coupled semiconductor nanostructures
    Nikolic, BK
    Zârbo, LP
    Souma, S
    PHYSICAL REVIEW B, 2006, 73 (07)
  • [25] Spin-Orbit Coupling Induced Phase Separation in Spin-1 Condensate with Optical Lattice
    Qiang Zhao
    International Journal of Theoretical Physics, 2019, 58 : 2282 - 2292
  • [26] Spin-Orbit Coupling Induced Phase Separation in Spin-1 Condensate with Optical Lattice
    Zhao, Qiang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (07) : 2282 - 2292
  • [27] Spin-orbit-induced semiconductor spin guides
    Valín-Rodríguez, M
    Puente, A
    Serra, L
    NANOTECHNOLOGY, 2003, 14 (08) : 882 - 885
  • [28] Spin-orbit coupling in surface plasmon scattering by nanostructures
    O'Connor, D.
    Ginzburg, P.
    Rodriguez-Fortuno, F. J.
    Wurtz, G. A.
    Zayats, A. V.
    NATURE COMMUNICATIONS, 2014, 5
  • [29] Ultrafast spin dynamics and inverse spin Hall effect in nanostructures with giant spin-orbit coupling
    Zvezdin, A. K.
    Davydova, M. D.
    Zvezdin, K. A.
    PHYSICS-USPEKHI, 2018, 61 (11) : 1127 - 1136
  • [30] Probing and Imaging Photonic Spin-Orbit Interactions in Nanostructures
    Cui, Tong
    Sun, Lin
    Bai, Benfeng
    Sun, Hong-Bo
    LASER & PHOTONICS REVIEWS, 2021, 15 (11)