Polyadic Constacyclic Codes

被引:21
作者
Chen, Bocong [1 ]
Dinh, Hai Q. [2 ]
Fan, Yun [3 ]
Ling, San [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637616, Singapore
[2] Kent State Univ, Dept Math Sci, Warren, OH 44483 USA
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Polyadic constacyclic code; p-adic valuation; generalized Reed-Solomon code; alternant code; Berlekamp-Welch decoding algorithm; DUADIC CODES; EXISTENCE;
D O I
10.1109/TIT.2015.2451656
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For any given positive integer m, a necessary and sufficient condition for the existence of Type-I m-adic constacyclic codes is given. Furthermore, for any given integer s, a necessary and sufficient condition for s to be a multiplier of a Type-I polyadic constacyclic code is given. As an application, some optimal codes from Type-I polyadic constacyclic codes, including generalized Reed-Solomon codes and alternant maximum distance separable codes, are constructed.
引用
收藏
页码:4895 / 4904
页数:10
相关论文
共 31 条
[1]  
Alperin J. L., 1997, GRADUATE TEXTS MATH, V162
[2]   Duadic group algebra codes [J].
Aly, Salah A. ;
Klappenecker, Andreas ;
Sarvepalli, Pradeep Kiran .
2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, :2096-2100
[3]  
[Anonymous], 2014, BERLEKAMP WELCH ALGO
[4]   The structure of 1-generator quasi-twisted codes and new linear codes [J].
Aydin, N ;
Siap, I ;
Ray-Chaudhuri, DK .
DESIGNS CODES AND CRYPTOGRAPHY, 2001, 24 (03) :313-326
[5]   GOPPA CODES [J].
BERLEKAMP, ER .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (05) :590-592
[6]   Negacyclic duadic codes [J].
Blackford, Thomas .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (04) :930-943
[7]   Isodual constacyclic codes [J].
Blackford, Thomas .
FINITE FIELDS AND THEIR APPLICATIONS, 2013, 24 :29-44
[8]   POLYADIC CODES [J].
BRUALDI, RA ;
PLESS, VS .
DISCRETE APPLIED MATHEMATICS, 1989, 25 (1-2) :3-17
[9]  
Cary Huffman., 2003, Fundamentals of Error-Correcting Codes, DOI 10.1017/CBO9780511807077
[10]   A note on isodual constacyclic codes [J].
Chen, Bocong ;
Dinh, Hai Q. .
FINITE FIELDS AND THEIR APPLICATIONS, 2014, 29 :243-246