Quantum size effects in the atomistic structure of armchair nanoribbons

被引:16
作者
Dasgupta, A. [1 ]
Bera, S. [1 ,2 ,3 ]
Evers, F. [1 ,2 ,3 ]
van Setten, M. J. [1 ,3 ]
机构
[1] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Theorie Kondensierten Mat, D-76128 Karlsruhe, Germany
[3] Karlsruhe Inst Technol, DFG Ctr Funct Nanostruct, D-76131 Karlsruhe, Germany
关键词
TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; GRAPHENE NANORIBBONS; AB-INITIO; ELECTRONIC-PROPERTIES; CARBON NANOTUBES; BASIS-SET; EDGES; STABILITY;
D O I
10.1103/PhysRevB.85.125433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum size effects in armchair graphene nanoribbons (AGNRs) with hydrogen termination are investigated via density functional theory (DFT) in the Kohn-Sham formulation. "Selection rules" are formulated, which allow extraction (approximately) the electronic structure of the AGNR bands starting from the four graphene dispersion sheets. In analogy with the case of carbon nanotubes, a threefold periodicity of the excitation gap with the ribbon width (N; number of carbon atoms per carbon slice) is predicted, which is confirmed by ab initio results. While traditionally such a periodicity would be observed in electronic response experiments, the DFT analysis presented here shows that it can also be seen in the ribbon geometry: the length of a ribbon with L slices approaches the limiting value for a very large width, 1 << N (keeping the aspect ratio low, N << L), with 1/N oscillations that display electronic selection rules. The oscillation amplitude is so strong that the asymptotic behavior is nonmonotonous, i.e.; wider ribbons exhibit a stronger elongation than narrower ones.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[2]   Elastic properties of graphene flakes: Boundary effects and lattice vibrations [J].
Bera, S. ;
Arnold, A. ;
Evers, F. ;
Narayanan, R. ;
Woelfle, P. .
PHYSICAL REVIEW B, 2010, 82 (19)
[3]   Conductance of functionalized nanotubes, graphene and nanowires: from ab initio to mesoscopic physics [J].
Blase, X. ;
Adessi, C. ;
Biel, B. ;
Lopez-Bezanilla, A. ;
Fernandez-Serra, M. -V. ;
Margine, E. R. ;
Triozon, F. ;
Roche, S. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (11-12) :2962-2967
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Electronic states of graphene nanoribbons studied with the Dirac equation [J].
Brey, L ;
Fertig, HA .
PHYSICAL REVIEW B, 2006, 73 (23)
[6]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[7]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[8]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[9]   Graphene Nanoribbons by Chemists: Nanometer-Sized, Soluble, and Defect-Free [J].
Doessel, Lukas ;
Gherghel, Lileta ;
Feng, Xinliang ;
Muellen, Klaus .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (11) :2540-2543
[10]   Electronic properties and quantum transport in Graphene-based nanostructures [J].
Dubois, S. M. -M. ;
Zanolli, Z. ;
Declerck, X. ;
Charlier, J. -C. .
EUROPEAN PHYSICAL JOURNAL B, 2009, 72 (01) :1-24