Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells

被引:64
|
作者
Kang, N-H [1 ]
Hwang, K-A [1 ]
Kim, S. U. [2 ,3 ]
Kim, Y-B [1 ]
Hyun, S-H [1 ]
Jeung, E-B [1 ]
Choi, K-C [1 ]
机构
[1] Chungbuk Natl Univ, Coll Vet Med, Lab Vet Biochem & Immunol, Cheongju 361763, Chungbuk, South Korea
[2] Univ British Columbia, Dept Med, Div Neurol, Vancouver, BC V6T 1W5, Canada
[3] Chung Ang Univ, Coll Med, Med Res Inst, Seoul 156756, South Korea
基金
新加坡国家研究基金会;
关键词
amniotic membrane; fluid-derived stem cells; tumor; transplantation; suicide gene; EXPRESSING CYTOSINE DEAMINASE; VIRUS THYMIDINE KINASE; BREAST-CANCER CELLS; IN-VITRO; TUMOR-GROWTH; BIFIDOBACTERIUM-INFANTIS; INTERFERON-BETA; VIVO; GANCICLOVIR; TARGET;
D O I
10.1038/cgt.2012.30
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.
引用
收藏
页码:517 / 522
页数:6
相关论文
共 50 条
  • [1] Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells
    N-H Kang
    K-A Hwang
    S U Kim
    Y-B Kim
    S-H Hyun
    E-B Jeung
    K-C Choi
    Cancer Gene Therapy, 2012, 19 : 517 - 522
  • [2] Stroke therapy: the potential of amniotic fluid-derived stem cells
    Elias, Maya
    Hoover, Jaclyn
    Nguyen, Hung
    Reyes, Stephanny
    Lawton, Christopher
    Borlongan, Cesar V.
    FUTURE NEUROLOGY, 2015, 10 (04) : 321 - 326
  • [3] Comparative Analysis of the Retinal Potential of Embryonic Stem Cells and Amniotic Fluid-Derived Stem Cells
    Decembrini, Sarah
    Cananzi, Mara
    Gualdoni, Sara
    Battersby, Alysia
    Allen, Nick
    Pearson, Rachael A.
    Ali, Robin R.
    De Coppi, Paolo
    Sowden, Jane C.
    STEM CELLS AND DEVELOPMENT, 2011, 20 (05) : 851 - 863
  • [4] Chondrogenic differentiation of amniotic fluid-derived stem cells
    Kolambkar, Yash M.
    Peister, Alexandra
    Soker, Shay
    Atala, Anthony
    Guldberg, Robert E.
    JOURNAL OF MOLECULAR HISTOLOGY, 2007, 38 (05) : 405 - 413
  • [5] Osteoblastic differentiation potential of human amniotic fluid-derived mesenchymal stem cells in different culture conditions
    Laowanitwattana, Tanongsak
    Aungsuchawan, Sirinda
    Narakornsak, Suteera
    Markme, Runchana
    Tancharoen, Waleephan
    Keawdee, Junjira
    Boonma, Nonglak
    Tasuya, Witoon
    Peerapapong, Lamaiporn
    Pangjaidee, Nathaporn
    Pothacharoen, Peeraphan
    ACTA HISTOCHEMICA, 2018, 120 (08) : 701 - 712
  • [6] The Therapeutic Potential of Amniotic Fluid-Derived Stem Cells on Busulfan-Induced Azoospermia in Adult Rats
    Ibrahim, Heba F.
    Safwat, Safinaz H.
    Zeitoun, Teshreen M.
    El Mulla, Khaled F.
    Medwar, Amira Y.
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2021, 18 (02) : 279 - 295
  • [7] Amniotic Fluid-Derived Stem Cells for Cardiovascular Tissue Engineering Applications
    Connell, Jennifer Petsche
    Camci-Unal, Gulden
    Khademhosseini, Ali
    Jacot, Jeffrey G.
    TISSUE ENGINEERING PART B-REVIEWS, 2013, 19 (04) : 368 - 379
  • [8] The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy
    Kim, Eun Young
    Lee, Kyung-Bon
    Kim, Min Kyu
    BMB REPORTS, 2014, 47 (03) : 135 - 140
  • [9] Amniotic Fluid-Derived Stem Cells: A Promising Resource for Cardiomyogenesis
    Sisakhtnezhad, Sajjad
    Merati, Tahereh
    EURASIAN JOURNAL OF MEDICINE AND ONCOLOGY, 2023, 7 (02): : 103 - 119
  • [10] Baculovirus-transduced mouse amniotic fluid-derived stem cells maintain differentiation potential
    Liu, Zheng-Shan
    Xu, Yong-Feng
    Feng, Shan-Wei
    Li, Yong
    Yao, Xiao-Li
    Lu, Xi-Lin
    Zhang, Cheng
    ANNALS OF HEMATOLOGY, 2009, 88 (06) : 565 - 572