A 2.5D finite-difference algorithm for elastic wave modeling using near-optimal quadratures

被引:7
作者
Li, Maokun [1 ]
Druskin, Vladimir [2 ]
Abubakar, Aria [2 ]
Habashy, Tarek M. [2 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Schlumberger, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
PERFECTLY MATCHED LAYER; RATIONAL-APPROXIMATIONS; FORM INVERSION; MEDIA; PML;
D O I
10.1190/GEO2015-0550.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We have developed a 2.5D finite-difference algorithm to model the elastic wave propagation in heterogeneous media. In 2.5D problems, it is assumed that the elastic properties of models are invariant along a certain direction. Therefore, we can convert the 3D problem into a set of 2D problems in the spectral domain. The 3D solutions are then obtained by applying a numerical integration in the spectral domain. Usually, the quadrature points used in the numerical integration scheme are sampled from the real axis in the spectral domain. The convergence of this quadrature can be very slow especially at high frequencies. We have applied the optimal quadrature scheme for the spectral integration. This is equivalent to transforming the contour of integration from the real axis into a path in the complex plane. Our numerical studies have indicated more than 10 times of reduction in the number of quadrature points compared with sampling along the real axis in the spectral domain. This scheme alleviates the bottleneck of computing speed in the 2.5D elastic wave modeling. Furthermore, it can improve the computational efficiency of 2.5D elastic full-waveform inversion algorithms.
引用
收藏
页码:T155 / T162
页数:8
相关论文
共 23 条
[1]  
Aki K., 1980, Quantitative seismology: Theory and Methods
[2]  
[Anonymous], 2000, Principles of Applied Mathematics: Transformation and Approximation
[3]   On optimal finite-difference approximation of PML [J].
Asvadurov, S ;
Druskin, V ;
Guddati, MN ;
Knizhnerman, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :287-305
[4]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[5]  
Cao H., 2008, CHINESE J GEOPHYS, V51, P654, DOI [10.1002/cjg2.v51.3, DOI 10.1002/CJG2.V51.3]
[6]  
Charara M., 1996, 66th Ann. Internat. Mtg: Soc. of Expl. Geophys, P1999, DOI 10.1190/1.1826558
[7]   An unsymmetric-pattern multifrontal method for sparse LU factorization [J].
Davis, TA ;
Duff, IS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (01) :140-158
[8]  
Doyon B., 2014, 84 ANN INT M SEG, P3482
[9]   Near-Optimal Perfectly Matched Layers for Indefinite Helmholtz Problems [J].
Druskin, Vladimir ;
Guettel, Stefan ;
Knizhnerman, Leonid .
SIAM REVIEW, 2016, 58 (01) :90-116
[10]   Waveform inversion of marine reflection seismograms for P impedance and Poisson's ratio [J].
Igel, H ;
Djikpesse, H ;
Tarantola, A .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1996, 124 (02) :363-371