A Batteryless Energy Harvesting Storage System for Implantable Medical Devices Demonstrated In Situ

被引:11
|
作者
Gall, Oren Z. [1 ,2 ]
Meng, Chuizhou [1 ,3 ]
Bhamra, Hansraj [1 ,2 ]
Mei, Henry [1 ,3 ]
John, Simon W. M. [4 ]
Irazoqui, Pedro P. [1 ,3 ]
机构
[1] Purdue Univ, Ctr Implantable Devices, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA
[4] Howard Hughes Med Inst, Jackson Lab, Bar Harbor, ME 04609 USA
关键词
Implantable device; Energy harvesting; Power management; In situ; Subcutaneous; Supercapacitor; Wireless transmission; OOK modulation; MU-W; POWER TRANSFER; WIRELESS; SUPERCAPACITORS; TECHNOLOGIES; MICROSYSTEM; SOC;
D O I
10.1007/s00034-018-0915-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report a wireless energy harvesting and telemetry storage system in 180 nm CMOS technology, demonstrated in situ in rat carcass. The implantable device has dimensions 13 mm x 15 mm and stores 87.5 mJ, providing a self-powering time of 8.5 s transmitting through tissue. We utilize an all-solid-state flexible supercapacitor of breakdown voltage 0.8 V and capacitance 400 mF to harvest incoming wireless power, followed by a boost converter CMOS that drives an active wireless transmitter at 1.5 V at 2.4 GHz in the industrial, scientific, and medical (ISM) band. The DC/DC converter component and switching frequency selection were guided by genetic algorithm analysis and use digital feedback to control the pulse width modulation (PWM), which slowly modifies the duty cycle to control output voltage fluctuations. This implantable medical device system presents the roadmap for batteryless energy harvesting in vivo and in clinical environments, exhibiting the highest operating storage density of 450 mu J/mm(2) reported to date.
引用
收藏
页码:1360 / 1373
页数:14
相关论文
共 50 条
  • [41] MICROSIZE ENERGY SOURCES FOR IMPLANTABLE AND WEARABLE MEDICAL DEVICES
    Plekhanova, Yu. V.
    Tarasov, S. E.
    Somov, A. S.
    Bol'shin, D. S.
    Vishnevskaya, M. V.
    Gotovtsev, P. M.
    Reshetilov, A. N.
    NANOTECHNOLOGIES IN RUSSIA, 2019, 14 (11-12): : 511 - 522
  • [42] Energy-Efficient Security in Implantable Medical Devices
    Daniluk, Krzysztof
    Niewiadomska-Szynkiewicz, Ewa
    2012 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2012, : 773 - 778
  • [43] MICROSIZE ENERGY SOURCES FOR IMPLANTABLE AND WEARABLE MEDICAL DEVICES
    Yu. V. Plekhanova
    S. E. Tarasov
    A. S. Somov
    D. S. Bol’shin
    M. V. Vishnevskaya
    P. M. Gotovtsev
    A. N. Reshetilov
    Nanotechnologies in Russia, 2019, 14 : 511 - 522
  • [44] Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors
    Watkins, C
    Shen, B
    Venkatasubramanian, R
    ICT: 2005 24th International Conference on Thermoelectrics, 2005, : 250 - 252
  • [45] Analyzing the Trends and Global Growth of Energy Harvesting for Implantable Medical Devices (IMDs) Research-A Bibliometric Approach
    Fuada, Syifaul
    Sarestoniemi, Mariella
    Katz, Marcos
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (03) : 115 - 135
  • [46] Subcutaneous Photovoltaic Infrared Energy Harvesting for Bio-implantable Devices
    Moon, Eunseong
    Blaauw, David
    Phillips, Jamie D.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (05) : 2432 - 2437
  • [47] ENERGY TRANSFERRING SYSTEM FOR TOTALLY IMPLANTABLE MEDICAL DEVICES USING AMORPHOUS MAGNETIC FIBERS
    MATSUKI, H
    MATSUZAKI, T
    SUZUKI, A
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1994, 181 : 1363 - 1365
  • [48] A Readily Scalable, Clinically Demonstrated, Antibiofouling Zwitterionic Surface Treatment for Implantable Medical Devices
    McVerry, Brian
    Polasko, Alexandra
    Rao, Ethan
    Haghniaz, Reihaneh
    Chen, Dayong
    He, Na
    Ramos, Pia
    Hayashi, Joel
    Curson, Paige
    Wu, Chueh-Yu
    Bandaru, Praveen
    Anderson, Mackenzie
    Bui, Brandon
    Sayegh, Aref
    Mahendra, Shaily
    Di Carlo, Dino
    Kreydin, Evgeniy
    Khademhosseini, Ali
    Sheikhi, Amir
    Kaner, Richard B.
    ADVANCED MATERIALS, 2022, 34 (20)
  • [49] Energy harvesting and storage in 1D devices
    Hao Sun
    Ye Zhang
    Jing Zhang
    Xuemei Sun
    Huisheng Peng
    Nature Reviews Materials, 2
  • [50] All-in-one energy harvesting and storage devices
    Lee, Ju-Hyuck
    Kim, Jeonghun
    Kim, Tae Yun
    Al Hossain, Md Shahriar
    Kim, Sang-Woo
    Kim, Jung Ho
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (21) : 7983 - 7999