Global Existence, Blow-up and Asymptotic Behavior of Solutions for a Class of Coupled Nonlinear Klein-Gordon Equations with Damping Terms

被引:6
作者
Wu, Shun-Tang [1 ]
机构
[1] Natl Taipei Univ Technol, Gen Educ Ctr, Taipei 106, Taiwan
关键词
Klein-Gordon equations; Damping terms; Potential well; Blow-up; Asymptotic behavior; SEMILINEAR WAVE-EQUATIONS; STANDING WAVES; SCHRODINGER SYSTEM; STRONG INSTABILITY; CAUCHY-PROBLEM; NONEXISTENCE;
D O I
10.1007/s10440-011-9662-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article studies the Cauchy problem for the coupled nonlinear Klein-Gordon equations with damping terms. By introducing a family of potential wells, we derive the invariant sets and the vacuum isolating of solutions. Furthermore, we show the global existence, finite time blow-up, as well as the asymptotic behavior of solutions. In particular, we establish a sharp criterion for global existence and blow-up of solutions when E(0)< d. Finally, a blow-up result of solutions with E(0)=d is also proved.
引用
收藏
页码:75 / 95
页数:21
相关论文
共 35 条
  • [1] [Anonymous], 1965, Proc. Symp. Appl. Math.
  • [2] [Anonymous], ADV MATH SCI APPL
  • [3] [Anonymous], 1970, NONLINEAR WAVE EQUAT
  • [4] Ball JM., 1978, Finite time blowup in nonlinear problems, nonlinear evolution equations, P189
  • [5] BERESTYCKI H, 1983, CR ACAD SCI I-MATH, V297, P307
  • [6] BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
  • [7] Uniform decay for the coupled Klein-Gordon-Schrodinger equations with locally distributed damping
    Bisognin, V.
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Soriano, J.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2): : 91 - 113
  • [8] DELSANTO D, 1997, PROG NONLIN, V32, P117
  • [9] Global existence of small solutions for cubic quasi-linear Klein-Gordon systems in one space dimension
    Fang, Dao Yuan
    Xue, Ru Ying
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) : 1085 - 1102
  • [10] GLOBAL SOLUTION OF THE SYSTEM OF WAVE AND KLEIN-GORDON EQUATIONS
    GEORGIEV, V
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1990, 203 (04) : 683 - 698