Planarity, Symmetry and Counting Tilings

被引:2
作者
Kayibi, Koko K. [2 ]
Pirzada, S. [1 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar 190006, Jammu & Kashmir, India
[2] Qatar Univ, Dept Math & Comp Sci, Doha, Qatar
关键词
T-tetromino; Tiling; 6-Vertex Ice Model; Medial graph; Eulerian orientation; Tutte polynomial;
D O I
10.1007/s00373-011-1062-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We axiomatize the geometrical properties of T-tetromino to what we call generalised k-T-tetromino. Using this set of axioms, we show that the number of tilings of a 2kn x 2km rectangular region is given by T(L (n,m) ; 3, 3) if and only if the tile is a k-T-tetromino. This generalizes a result of Korn and Pak (Theor Comp Sci 319:3-27, 2004).
引用
收藏
页码:483 / 497
页数:15
相关论文
共 12 条
[1]  
Baxter R, 1982, EXACTLY SOLVED MODEL
[2]  
Brylawski Thomas, 1992, MATROID APPL, V40, P123
[3]  
Golomb S.W., 1995, POLYOMINOES, P97
[4]  
Hetyei G., 2009, DMTCS P AK, P479
[5]   Tetromino tilings and the Tutte polynomial [J].
Jacobsen, Jesper Lykke .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (07) :1439-1446
[6]  
Kayibi K., DISC MATH UNPUB
[7]   Tilings of rectangles with T-tetrominoes [J].
Korn, M ;
Pak, I .
THEORETICAL COMPUTER SCIENCE, 2004, 319 (1-3) :3-27
[8]  
Korn M., COMBINATORIAL EVALUA
[9]  
Merino C, 2008, AUSTRALAS J COMB, V41, P107
[10]   ON THE EVALUATION AT (3, 3) OF THE TUTTE POLYNOMIAL OF A GRAPH [J].
VERGNAS, ML .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 45 (03) :367-372