Continuous synthesis of surface-modified nanoparticles in supercritical methanol: A facile approach to control dispersibility

被引:10
作者
Nugroho, Agung [1 ,2 ]
Veriansyah, Bambang [1 ]
Kim, Seok Ki [1 ]
Lee, Byung Gwon [1 ]
Kim, Jaehoon [1 ,2 ]
Lee, Youn-Woo [3 ]
机构
[1] Korea Inst Sci & Technol, Clean Energy Res Ctr, Supercrit Fluid Res Lab, Seoul 136791, South Korea
[2] Univ Sci & Technol, Taejon 305333, South Korea
[3] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 151744, South Korea
基金
新加坡国家研究基金会;
关键词
Supercritical methanol; Metal oxides; Nanoparticle; Surface modification; Dispersibility; OXIDE NANOPARTICLES; NANOCRYSTALS; WATER; NANOFLUIDS; PARTICLES;
D O I
10.1016/j.cej.2012.04.030
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Surface-modified cerium oxide (CeO2) nanoparticles, dispersible in either a hydrophilic or a hydrophobic medium, are synthesized continuously in supercritical methanol using methoxy polyethylene glycol (PEG 350, H(OCH2CH2)(n)OCH3, MW = 350 g/mol) or alpha,omega-Bis(2-carboxymethyl)polyethylene glycol (PEG600, HO OCCH2(OCH2CH2)(n)OCH2COOH, MW = 600 g/mol) as a surface modifier. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show that the surface modifiers inhibit the growth of the particles, resulting in smaller size particles (20-25 nm) as compared to unmodified particles (35 nm) synthesized in supercritical methanol or unmodified particles (91 nm) synthesized in supercritical water. At a high concentration of PEG600 (0.3 M), surface-modified particles with a size of 3-4 nm and a low degree of aggregation are produced. An X-ray diffraction analysis reveals that the PEG-modified nanoparticles retain the CeO2 phase. Fourier transform infrared spectroscopy and a thermal gravimetric analysis indicate that the amount of modifier attached to the surface of the nanoparticles is 6.88%, when 0.3 M of PEG350 is used, and 4.49%, when 0.3 M of PEG600 is used. A long-term stability test (40 days) revealed that the PEG350-modified CeO2 nanoparticles have good dispersibility in a hydrophobic medium (oil), while PEG600-modified CeO2 nanoparticles have good dispersibility in a hydrophilic medium (water). This indicates that the nanoparticle dispersibility in either a hydrophilic or hydrophobic medium can be controlled by adjusting the end-group functionality and chain length of the modifiers. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:146 / 153
页数:8
相关论文
共 26 条
[1]   RAPID AND CONTINUOUS HYDROTHERMAL CRYSTALLIZATION OF METAL-OXIDE PARTICLES IN SUPERCRITICAL WATER [J].
ADSCHIRI, T ;
KANAZAWA, K ;
ARAI, K .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1992, 75 (04) :1019-1022
[2]   Hydrothermal synthesis of metal oxide fine particles at supercritical conditions [J].
Adschiri, T ;
Hakuta, Y ;
Arai, K .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (12) :4901-4907
[3]   Green materials synthesis with supercritical water [J].
Adschiri, Tadafumi ;
Lee, Youn-Woo ;
Goto, Motonobu ;
Takami, Seiichi .
GREEN CHEMISTRY, 2011, 13 (06) :1380-1390
[4]  
Allen T., 1997, Particle size measurement
[5]   Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery [J].
Banerjee, Shashwat S. ;
Chen, Dong-Hwang .
CHEMISTRY OF MATERIALS, 2007, 19 (25) :6345-6349
[6]   Hydrothermal technology for nanotechnology [J].
Byrappa, K. ;
Adschiri, T. .
PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS, 2007, 53 (02) :117-166
[7]   Synthesis, characterization, and catalytic applications of a palladium-nanoparticle-cored dendrimer [J].
Gopidas, KR ;
Whitesell, JK ;
Fox, MA .
NANO LETTERS, 2003, 3 (12) :1757-1760
[8]   Continuous Synthesis of Surface-Modified Metal Oxide Nanoparticles Using Supercritical Methanol for Highly Stabilized Nanofluids [J].
Kim, Jaehoon ;
Park, Yoo-Seok ;
Veriansyah, Bambang ;
Kim, Jae-Duck ;
Lee, Youn-Woo .
CHEMISTRY OF MATERIALS, 2008, 20 (20) :6301-6303
[9]   Super-stable, high-quality Fe3O4 dendron-nanocrystals dispersible in both organic and aqueous solutions [J].
Kim, M ;
Chen, YF ;
Liu, YC ;
Peng, XG .
ADVANCED MATERIALS, 2005, 17 (11) :1429-+
[10]  
Krogman K., 2005, NANOTECHNOLOGY, V16, P3584