Can ensemble techniques improve coral reef habitat classification accuracy using multispectral data?

被引:7
|
作者
Hossain, Mohammad Shawkat [1 ]
Muslim, Aidy M. [1 ]
Nadzri, Muhammad Izuan [1 ]
Teruhisa, Komatsu [2 ]
David, Dianacia [1 ]
Khalil, Idham [1 ]
Mohamad, Zaleha [1 ]
机构
[1] Univ Malaysia Terengganu UMT, Inst Oceanog & Environm INOS, Kuala Terengganu, Malaysia
[2] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan
关键词
Coral reef; ensemble; majority voting; south China sea; Malaysia; IMAGE CLASSIFICATION; BENTHIC HABITATS; CLIMATE-CHANGE; ENVIRONMENTS; LANDSAT; FUTURE; CLASSIFIERS; BATHYMETRY; SIMULATION; MANAGEMENT;
D O I
10.1080/10106049.2018.1557263
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remote sensing has potential in studies of the benthic habitat and extracting the reflectance from the data of multispectral sensors, but traditional image classification techniques cannot provide coral habitat maps with adequate accuracy. This study tested five traditional and three ensemble classification techniques on QuickBird for mapping the benthic composition of coral reefs on the Lang Tengah Island (Malaysia). The common techniques, minimum distance, maximum likelihood,K-nearest neighbour, Fisher and parallelepiped techniques were compared with ensemble classifiers, such as majority voting (MV), simple averaging, and mode combination. The per-class accuracy of the habitat detection improved in the ensemble classifiers; in particular, the MV classifier achieved 95%, 65%, 75% and 95% accuracies for coral, sparse coral, coral rubble and sand, respectively. Ensembles increased the accuracy of the habitat mapping classification by 28%, relative to conventional techniques. Thus, the ensemble techniques can be preferred over the traditional for benthic habitat mapping.
引用
收藏
页码:1214 / 1232
页数:19
相关论文
共 50 条
  • [1] Coral Reef Benthos Classification Using Data from a Short-Range Multispectral Sensor
    Rodrigo Garza-Perez, Joaquin
    Barron-Coronel, Frida
    REMOTE SENSING, 2022, 14 (22)
  • [2] RESOLUTION ENHANCEMENT OF MULTISPECTRAL IMAGE DATA TO IMPROVE CLASSIFICATION ACCURACY
    MUNECHIKA, CK
    WARNICK, JS
    SALVAGGIO, C
    SCHOTT, JR
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1993, 59 (01): : 67 - 72
  • [3] Unlabeling data can improve classification accuracy
    Lausser, Ludwig
    Schmid, Florian
    Schmid, Matthias
    Kestler, Hans A.
    PATTERN RECOGNITION LETTERS, 2014, 37 : 15 - 23
  • [4] Can multiresolution fusion techniques improve classification accuracy?
    Bruzzone, L.
    Carlin, L.
    Alparone, L.
    Baronti, S.
    Garzelli, A.
    Nencini, F.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XII, 2006, 6365
  • [5] Automated classification of underwater multispectral imagery for coral reef monitoring
    Gleason, A. C. R.
    Reid, R. P.
    Voss, K. J.
    2007 OCEANS, VOLS 1-5, 2007, : 1857 - +
  • [6] Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem
    Zhang, Caiyun
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 104 : 213 - 223
  • [7] Classification of Multispectral Satellite Images Using Ensemble Techniques of Bagging, Boosting and AdaBoost
    Kulkarni, Shivali
    Kelkar, Vishakha
    2014 INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, COMMUNICATION AND INFORMATION TECHNOLOGY APPLICATIONS (CSCITA), 2014, : 253 - 258
  • [8] Reef Cover, a coral reef classification for global habitat mapping from remote sensing
    Emma V. Kennedy
    Chris M. Roelfsema
    Mitchell B. Lyons
    Eva M. Kovacs
    Rodney Borrego-Acevedo
    Meredith Roe
    Stuart R. Phinn
    Kirk Larsen
    Nicholas J. Murray
    Doddy Yuwono
    Jeremy Wolff
    Paul Tudman
    Scientific Data, 8
  • [9] Schemes of Combining Discriminant Functions to Improve the Classification Accuracy for Ensemble of Data Sources
    Lange, M. M.
    Paramonov, S. V.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2023, 59 (04) : 395 - 401
  • [10] Schemes of Combining Discriminant Functions to Improve the Classification Accuracy for Ensemble of Data Sources
    M. M. Lange
    S. V. Paramonov
    Optoelectronics, Instrumentation and Data Processing, 2023, 59 : 395 - 401