Self-supervised Detransformation Autoencoder for Representation Learning in Open Set Recognition

被引:1
|
作者
Jia, Jingyun [1 ]
Chan, Philip K. [1 ]
机构
[1] Florida Inst Technol, Melbourne, FL 32901 USA
关键词
Open set recognition; Self-supervised learning; Representation learning;
D O I
10.1007/978-3-031-15937-4_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of Open set recognition (OSR) is to learn a classifier that can reject the unknown samples while classifying the known classes accurately. In this paper, we propose a self-supervision method, Detransformation Autoencoder (DTAE), for the OSR problem. This proposed method engages in learning representations that are invariant to the transformations of the input data. Experiments on several standard image datasets indicate that the pre-training process significantly improves the model performance in the OSR tasks. Moreover, our analysis indicates that DTAE can yield representations that contain some class information even without class labels.
引用
收藏
页码:471 / 483
页数:13
相关论文
共 50 条
  • [41] Adaptive Self-Supervised Graph Representation Learning
    Gong, Yunchi
    36TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2022), 2022, : 254 - 259
  • [42] SELF-SUPERVISED REPRESENTATION LEARNING FOR ULTRASOUND VIDEO
    Jiao, Jianbo
    Droste, Richard
    Drukker, Lior
    Papageorghiou, Aris T.
    Noble, J. Alison
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1847 - 1850
  • [43] SelfDoc: Self-Supervised Document Representation Learning
    Li, Peizhao
    Gu, Jiuxiang
    Kuen, Jason
    Morariu, Vlad, I
    Zhao, Handong
    Jain, Rajiv
    Manjunatha, Varun
    Liu, Hongfu
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5648 - 5656
  • [44] Solving Inefficiency of Self-supervised Representation Learning
    Wang, Guangrun
    Wang, Keze
    Wang, Guangcong
    Torr, Philip H. S.
    Lin, Liang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9485 - 9495
  • [45] Revisiting Self-Supervised Visual Representation Learning
    Kolesnikov, Alexander
    Zhai, Xiaohua
    Beyer, Lucas
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1920 - 1929
  • [46] Self-supervised Representation Learning for Astronomical Images
    Hayat, Md Abul
    Stein, George
    Harrington, Peter
    Lukic, Zarija
    Mustafa, Mustafa
    ASTROPHYSICAL JOURNAL LETTERS, 2021, 911 (02)
  • [47] Self-supervised representation learning for trip recommendation
    Gao, Qiang
    Wang, Wei
    Zhang, Kunpeng
    Yang, Xin
    Miao, Congcong
    Li, Tianrui
    KNOWLEDGE-BASED SYSTEMS, 2022, 247
  • [48] MusicBERT: A Self-supervised Learning of Music Representation
    Zhu, Hongyuan
    Niu, Ye
    Fu, Di
    Wang, Hao
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3955 - 3963
  • [49] Self-supervised Representation Learning on Dynamic Graphs
    Tian, Sheng
    Wu, Ruofan
    Shi, Leilei
    Zhu, Liang
    Xiong, Tao
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1814 - 1823
  • [50] Self-Supervised Dense Visual Representation Learning
    Ozcelik, Timoteos Onur
    Gokberk, Berk
    Akarun, Lale
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,