Self-supervised Detransformation Autoencoder for Representation Learning in Open Set Recognition

被引:1
|
作者
Jia, Jingyun [1 ]
Chan, Philip K. [1 ]
机构
[1] Florida Inst Technol, Melbourne, FL 32901 USA
关键词
Open set recognition; Self-supervised learning; Representation learning;
D O I
10.1007/978-3-031-15937-4_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of Open set recognition (OSR) is to learn a classifier that can reject the unknown samples while classifying the known classes accurately. In this paper, we propose a self-supervision method, Detransformation Autoencoder (DTAE), for the OSR problem. This proposed method engages in learning representations that are invariant to the transformations of the input data. Experiments on several standard image datasets indicate that the pre-training process significantly improves the model performance in the OSR tasks. Moreover, our analysis indicates that DTAE can yield representations that contain some class information even without class labels.
引用
收藏
页码:471 / 483
页数:13
相关论文
共 50 条
  • [1] Feature Decoupling in Self-supervised Representation Learning for Open Set Recognition
    Jia, Jingyun
    Chan, Philip K.
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [2] Context Autoencoder for Self-supervised Representation Learning
    Xiaokang Chen
    Mingyu Ding
    Xiaodi Wang
    Ying Xin
    Shentong Mo
    Yunhao Wang
    Shumin Han
    Ping Luo
    Gang Zeng
    Jingdong Wang
    International Journal of Computer Vision, 2024, 132 : 208 - 223
  • [3] Context Autoencoder for Self-supervised Representation Learning
    Chen, Xiaokang
    Ding, Mingyu
    Wang, Xiaodi
    Xin, Ying
    Mo, Shentong
    Wang, Yunhao
    Han, Shumin
    Luo, Ping
    Zeng, Gang
    Wang, Jingdong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 132 (1) : 208 - 223
  • [4] A Novel Self-supervised Representation Learning Model for an Open-Set Speaker Recognition
    Ohi, Abu Quwsar
    Gavrilova, Marina L.
    COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, CISIM 2023, 2023, 14164 : 270 - 282
  • [5] Mixed Autoencoder for Self-supervised Visual Representation Learning
    Chen, Kai
    Liu, Zhili
    Hong, Lanqing
    Xu, Hang
    Li, Zhenguo
    Yeung, Dit-Yan
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22742 - 22751
  • [6] Self-supervised Discriminative Representation Learning by Fuzzy Autoencoder
    Yang, Wenlu
    Wang, Hongjun
    Zhang, Yinghui
    Liu, Zehao
    Li, Tianrui
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (01)
  • [7] Self-supervised representation learning for surgical activity recognition
    Paysan, Daniel
    Haug, Luis
    Bajka, Michael
    Oelhafen, Markus
    Buhmann, Joachim M.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (11) : 2037 - 2044
  • [8] Self-Supervised ECG Representation Learning for Emotion Recognition
    Sarkar, Pritam
    Etemad, Ali
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (03) : 1541 - 1554
  • [9] GMAEEG: A Self-Supervised Graph Masked Autoencoder for EEG Representation Learning
    Fu, Zanhao
    Zhu, Huaiyu
    Zhao, Yisheng
    Huan, Ruohong
    Zhang, Yi
    Chen, Shuohui
    Pan, Yun
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (11) : 6486 - 6497
  • [10] Self-supervised representation learning for surgical activity recognition
    Daniel Paysan
    Luis Haug
    Michael Bajka
    Markus Oelhafen
    Joachim M. Buhmann
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 2037 - 2044